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In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel
heat flux has two components with one associated with the parallel thermal energy and the other
the perpendicular thermal energy. In a kinetic simulation with magnetic flux expansion toward an
absorbing boundary, the parallel heat flux of the parallel thermal energy is found to flow from low to
high parallel temperature region. This unusual behavior is understood with the help of an analytical
calculation of the drift-kinetic model using the same upstream source in the simulation.

PACS numbers: 52.55.Dy,52.25.Fi,52.25.Dg

The plasma heat flux is the third-order moment of the
species distribution function f(x,v), q =

∫

mw2wfd3v,
with w = v−u the particle fluctuation velocity and u the
plasma flow velocity. In a magnetized plasma, the per-
pendicular heat flux across magnetic field lines is greatly
reduced. The ratio between parallel and perpendicular
heat fluxes, q‖ =

∫

mw2w‖fd
3v with w‖ ≡ (w ·b)b and

b ≡ B/‖B‖, q⊥ =
∫

mw2w⊥fd
3v with w⊥ ≡ w −w‖,

becomes particularly large for open field lines that inter-
cept some boundaries, for example, the chamber wall in
a laboratory experiment. In cases where a temperature
anisotropy is sustained, i.e. T‖ 6= T⊥ with respect to the
magnetic field, the parallel heat flux q‖ [1] has two com-
ponents q‖ = (qn + 2qs)b, which are associated with the
parallel and perpendicular thermal energies, respectively,

qn ≡

∫

mw2
‖w‖fd

3v, qs ≡
1

2

∫

mw2
⊥w‖fd

3v. (1)

They modify the double-adiabatic laws (with ∂B/∂t = 0)
as (n3/B2)(d/dt)(P‖B

2/n3) + ∇ · (qnb) − 2qs∇ · b = 0
and nB(d/dt)(P⊥/nB) + ∇ · (qsb) + qs∇ · b = 0, with
P‖,⊥ = nT‖,⊥ and n the plasma density [1, 2].
Normally q‖ is modeled as thermal conduction, q‖ =

−κ‖∇‖T, with the conductivity κ‖ > 0, so heat flows
from high to low temperature region [3]. In the col-
lisional regime where the plasma stays close to local
thermodynamic equilibrium, the thermodynamic cross
terms can also drive parallel heat flux by, for exam-
ple, density gradient, where the transport coefficients are
known to satisfy the Onsager relation [4–6]. The opposite
limit of low collisionality or long mean-free-path (λmfp)
is prevalent for space/astrophysical plasmas and labo-
ratory confinement experiments. The naive approach
of κ‖ = λ2

mfp/τcollision = v2thτcollision indicates enormous
electron thermal conductivity which implies a flattened
parallel temperature profile (subject to flux limiting in
practice [7]). A more refined description (for exam-
ple, by Hammett and Perkins [8] and Hazeltine [9]) il-
lustrates the non-local nature of the parallel heat flux,
q(x) = (n0vth/π

3/2T0)
∫∞

0
[T (x− x′) − T (x + x′)]/x′dx′,

which still produces a heat flux that relaxes temperature
gradient for monotonic temperature profile, but depends

on the global as opposed to local temperature variation.
The nonlocal nature of heat flux in long λmfp plasmas
has been widely studied both as a fundamental closure
issue [10] and as a novel physics model for interpreting ex-
periments [11]. It also motivates sophisticated computa-
tional method development [12]. The Hammett-Perkins-
Hazeltine expression of nonlocal parallel heat flux [8, 9] is
for near-Maxwellian plasmas, which is a suitable descrip-
tion for plasmas confined by closed flux surfaces. The
open magnetic field line tends to produce significant de-
viation from local Maxwellian and introduce additional
novel behavior for the parallel heat flux.

FIG. 1: Simulation setup: a symmetric flux expander is gen-
erated by current wires with B0(at pointO)/Bw(at point B) =
5. The simulation domain has x ∈ [−Lx, Lx] in the horizon-
tal direction and y ∈ [−Ly , Ly ] in the vertical direction. The
plasma is uniform in the z direction (out of plane) and sym-
metric about x = 0.

In this Letter, we elucidate the physics underlying a
surprising but representative kinetic-Maxwell simulation
result that for an open field line plasma bounded by ab-
sorbing walls, a parallel heat flux, specifically the qn com-
ponent, flows from low to high T‖ region. This contra-
dicts the conventional thermal conduction picture and
presents an interesting theoretical challenge with pro-
found practical implications in that the parallel heat flux
has a deciding role in determining the plasma profile
along the open magnetic field lines. Through an anal-
ysis of the particle orbit under the combined effect of the
mirror force and the ambipolar electric field in a mag-
netic flux expander, we find that this peculiar behavior
of the parallel heat flux component qn can be understood
from the passing particle distribution functions calcu-
lated from the steady state drift-kinetic equation with



2

the same upstream source in the simulation. Our cal-
culation re-affirms Hazeltine’s important observation [9]
that the source and wall condition enter explicitly in the
parallel heat flux.
The simulation case as shown in Fig. 1, captures the es-

sential features of a long λmfp plasma in an open magnetic
field with significant ‖B‖ variation. A (quasi-)steady
state is established by an upstream source compensat-
ing the wall loss, which enters the kinetic equation as

∂f

∂t
+ v ·

∂f

∂x
+

q

m
(E+

v

c
×B) ·

∂f

∂v
= C(f) + S , (2)

where the subscripts for different species are suppressed,
and the source distribution is assumed to be Maxwellian,

S(x,v) = h(x)
( m

2πTs

)3/2

exp
(

−
mv2

2Ts

)

. (3)

Herem is the particle mass, Ts(= 1) is the source temper-
ature, and h(x) is the spatial distribution of the source,
which is uniform and localized in the shaded region,
x ∈ [−Ls/2, Ls/2]. The VPIC [13] kinetic simulation runs
use a time step ∆t < 1/ωpe, grid size ∆x = λd/4, Lx =
2Ly = 60λd, ρe = 4λd and mi/me = 100, with λd, ωpe

and ρe the Debye length, the electron plasma frequency
and the electron gyro-radius, respectively.
Our kinetic simulations produce quasi-steady state

plasmas even in the collisionless limit [C(f) = 0]. As
shown in Fig. 2 and 3, both ions and electrons see a large
temperature anisotropy, especially in the high field region
away from the absorbing boundary. The profile variation
is plotted from A to B minus the Debye sheath shown
in Fig. 1. Both the ion and electron perpendicular tem-
peratures decrease toward the wall, consistent with the
magnetic moment conservation in a flux expander. The
parallel temperature mostly increases toward the wall as
the ion and electron go down the magnetic hill. Both
components of the parallel heat flux are positive which
means they flow toward the wall. The qn components,
which are related to parallel thermal energy and defined
in Eq. (1), are found to flow from low T‖ to high T‖

along the open magnetic field line. To understand this
unusual behavior, we perform analytical calculations of
the parallel heat flux and compare them to the simula-
tion. In the limit of small ion gyroradius ρi over system
scale L and low frequency, Eq. (2) can be reduced to the
drift-kinetic equation. To lowest order in ρi/L, parallel
streaming dominates and the steady state guiding center
distribution function [14] is given by,

v‖(∂/∂l)f(l, ǫ, µ, σ) = S(l, ǫ, µ), (4)

where l is the distance along the field line so b · ∇ ≡
∂/∂l, µ = mv2⊥/2B is the magnetic moment, ǫ =
mv2‖/2 + µB + qφ0 is the total energy, σ = ±1 is pos-

itive/negative if the particle moves to the right/left,
v‖ =

√

2(ǫ− µB − qφ0)/m is the guiding center speed
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FIG. 2: Top: the ion temperature profile from simulation
and analytical result; Bottom: the ion parallel heat flux from
simulation and analytical result.

along the field line, φ0 is the ambipolar potential. We will
use φ0(l) from the kinetic simulation in Eq. (4). Without
loss of generality, φ0 is set to zero at l = 0.
Conservation of ǫ and µ helps the classification of par-

ticle orbit. The combined force of mirror field and am-
bipolar electric field can be conveniently described by
an effective potential φeff(l) = φ0(l) + µB(l)/q. We first
note that going down a magnetic hill, the ambipolar po-
tential decreases to slow down the electrons. The ion
φeff thus monotonically decreases toward the wall, so all
ions are passing particles. For its negative charge, the
electron φeff produces both trapped and passing orbits
for different values of µ. The electron distribution can
be separated into the trapped and passing population:
fe = ft + fp. The trap-passing boundary is given by an
eclipse in the (v‖, v⊥) space,

v2‖ + v2⊥(1 −Bw/B) = 2e(φ− φw)/me , (5)

with φw the wall potential. Since all passing particles
originate at the source region with non-negative parallel
kinetic energy, there is another constraint in (v‖, v⊥),

v2‖ − v2⊥(B0/B − 1) + 2qφ/m ≥ 0 , (6)
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FIG. 3: Top: the electron temperature profile from simula-
tion; Bottom: the electron parallel heat flux from simulation
and analytical result.

which is bounded by a hyperbola. The particle distribu-
tions of ions and electrons from the kinetic simulation are
shown in Fig. 4, along with the two constraint curves de-
fined by Eqs. (5) (dashed thick line) and (6) (solid thick
line). The particles from the source should all fall be-
low the hyperbola, Eq. (6), and the trapped electrons
are within the eclipse, Eq. (5). Due to the collisionless
scattering process, such as the wave-particle interaction,
there are particle fluxes across these boundaries in the
velocity space, which lead to particle distribution in the
inaccessible regions as shown in Fig. 4.

Only the passing particles carry energy flux to the ab-
sorbing boundary. Their distribution function is subject
to the boundary condition, fp(−Lx,+) = fp(+Lx,−) =
0, where +/− means particles moving to the right/left.
Integrating Eq. (4) from −Lx to l [14, 15], we find that
the passing particles moving to the right has the distri-
bution

fp(l > 0,+) =

∫ l

−Lx

S(s, ǫ, µ,+)v−1
‖ ds

= Γs(
m

2πTs
)3/2

exp(−ǫ/Ts)
√

2(ǫ− µB0)/m
, (7)

where h(s) = Γsδ(s) for simplicity and Γs corresponds
to injected particle flux. The result for passing parti-
cles moving to the left is the same. The denominator in
Eq. (7) implies ǫ ≥ µB0, as in Eq. (6). The moments
of the distribution function, 〈A〉 =

∫

A(2πB/m2v‖)(fp+
ft)dǫdµ = 〈A〉p+〈A〉t , generally have contributions from
both the passing and trapped population. But the odd
order moments in v‖ vanish for the trapped population
due to the symmetry ft(ǫ, µ,+) = ft(ǫ, µ,−). For exam-
ple the two components of the parallel energy flux are
1
2 〈mv3‖〉 =

1
2 〈mv3‖〉p and 〈µBv‖〉 = 〈µBv‖〉p.
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FIG. 4: The ion and electron distribution contour (ln(fi,e+1))
at l = 15λd (along AB in Fig. 1) from the kinetic simulation.

For ions, the integration boundary in the (µ, ǫ) space is
given by the constraint ǫ ≥ µB0. The ion density follows

ni = Γs

√

mi

2πTs
e−

qφ

2Ts

∫∞

0
e−(R+1)t′K0(Rt′ − t′ − qφ

2Ts
)dt′ ,

where R = B0/B, and K0(x) is the modified Bessel func-
tion of the second kind. The ion flux, Γi ≡ niui, is
found to be proportional to the magnetic strength B,
Γi = Γs/2R = ΓsB/2B0, consistent with the continuity

equation ∇ · (Γi
~b) = 0. The parallel ion energy flux has

1

2
〈miv

3
i‖〉 =

ΓsTs

2R
(
3

2
−

1

R
−

qφ

Ts
) , (8)

〈µiBvi‖〉 =
ΓsTs

2R2
. (9)

Hence the two components of ion parallel heat flux are
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qin = 〈miv
3
‖i〉 − 3niuiTi‖ −nimiu

3
i , and qis = 〈µiBvi‖〉 −

niuiTi⊥. The expressions for the anisotropic tempera-
tures Ti‖ and Ti⊥ are similarly obtained, but are not
explicitly shown here. Plugging in the ambipolar poten-
tial φ0 from the kinetic simulation, the analytical expres-
sions for both ion temperatures and parallel heat fluxes
are found to agree with the simulation result, as shown
in Fig. 2. The ion distribution function in Eq. (7) repro-
duces the qin that flows from low Ti‖ to high Ti‖ along
the open field line.
For electrons, the trap-passing boundary must be

taken into account. The above approach still holds but
the integration bounds in the (µ, ǫ) space are now de-
fined by both Eq. (5) and Eq. (6). The integration
over ǫ and µ breaks into two parts. When µ ≥ µ0,
it is ǫ ≥ µB0; when µ < µ0, it is ǫ ≥ (µBw − eφw),
where µ0 = |eφw|/(B0 −Bw) is given by the intersection
of the two constraint curves. Here, we have assumed
|φ| < |φw |(B0 − B)/(B0 − Bw), which guarantees that
the electrons will be lost if they satisfy ǫ ≥ (µBw − eφw).
The passing electron distribution, Eq.(7), uniquely de-

termines the odd order moments, i.e. the parallel particle
and energy fluxes. The electron particle flux is Γe =

〈v‖〉 = (Γs/2R)
[

erfc(

√

φ̃w) + αCerfi(

√

αφ̃w)
]

, where

α ≡ Bw/(B0 −Bw), φ̃w ≡ e|φw|/Ts, C ≡ e−(α+1)φ̃w/α3/2

and erf(), erfi(), erfc() are the standard, imaginary, and
complementary error functions. Comparing the particle
flux of the two species with φ̃w = 0.241 Ts from the sim-
ulation, we find Γep/Γi ≈ 0.9, which implies that the col-
lisionless detrapping of the trapped electron population
makes a small but essential (to maintain ambipolarity)
contribution to the total electron flux to the wall.
The two components of the electron parallel energy

flux are similarly integrated,

1

2
〈mev

3
e‖〉 =

ΓsTs

2R2

[

D +R
(3

2
−

1

R
+

eφ

Ts

)

erfc(

√

φ̃w)

+ C
(

Rα
eφ

Ts
+RG−G−

1

2

)

erfi(

√

αφ̃w)
]

,

〈µeBve‖〉 =
ΓsTs

2R2

[

−D + erfc(

√

φ̃w)

+ C(G+
1

2
)erfi(

√

αφ̃w)
]

, (10)

where D ≡ e−φ̃w

√

φ̃w/π(1 + α)/α,G ≡ α[3/2 + (1 +

α)φ̃w ]. The electron parallel heat flux is again obtained
by subtracting the convective energy flux as for the ion,
but the nemeu

3
e term is ignorable for mi/me ≫ 1. Since

we do not have an analytical expression for the trapped
electron distribution, the convective pieces neueTe‖ and
neueTe⊥ are substituted by ΓeTe‖ and ΓeTe⊥ with Te‖,⊥

directly from the simulation. The resulting qen and qes
compare favorably with those directly measured in the
simulation, as shown in Fig. 3. Again the qen flows from
low Te‖ to high Te‖ along the open field line.

The passing electrons, upon integrating fp over ǫ and µ
as above, make a small contribution to the total electron
density nep ∼ (me/mi)

1/2ni. But due to the large elec-
tron thermal speed vth,e = (mi/me)

1/2vth,i, the passing
electrons from source distribution alone, Eq.(7), dom-
inate the ambipolar flux Γep ≈ 0.9Γi, and the paral-
lel energy flux. The input energy flux by the source,
Qin = (3/4)ΓsTs, is the same for ions and electrons.
The ambipolar electric field transfers part of the elec-
tron energy into ions. The parallel energy flux Q =
〈mv3‖〉p/2+ 〈µBv‖〉p is larger for the ions compared with

the electrons (Qi = 1.37Qe). This calculation ignores
the wave-particle interaction and collisionless detrapping
of the electrons, but finds Qi +Qe ≈ 2Qin. This implies
that the collisionless detrapping of the trapped electrons
makes a similarly small contribution to the parallel en-
ergy flux, just as the parallel particle flux. Unlike the
ions which have a much greater convective flow energy
component, the electron parallel energy flux has a much
greater parallel heat flux (qen + qes).
In conclusion, the novel behavior of parallel heat flux

qn flows from low to high T‖ along an open magnetic
field line can be understood in terms of the passing ion
and electron distribution functions going down a mag-
netic hill. The primary effect of the mirror force and
ambipolar electric field is to compress the passing parti-
cle distribution function in v⊥ but broaden it in v‖. Since
plasma temperature is associated with the spreading of
its distribution about the mean value, the perpendicular
temperature of the passing particles decreases while the
parallel temperature increases. The conductive heat flux
is mathematically determined by the skewness of the dis-
tribution. For example, the ion distribution about v‖ has
positive skewness and thus qin is going to the wall.
We wish to thank Herb Berk for useful discussions and

Department of Energy Office of Fusion Energy Sciences
for support under contract DE-AC52-06NA25396.



5

[1] G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. R.
Soc. A 236, 112 (1956).

[2] A. Macmahon, Phys. Fluids 8, 1840 (1965).
[3] S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965).
[4] T. C. Luce, C. C. Petty, and J. C. M. Dehass Phys. Rev.

Lett. 68, 52 (1992).
[5] A. H. Boozer, Phys. Fluids B 4, 2845 (1992).
[6] J. A. Krommes, Phys. Fluids B 5, 3908 (1993).
[7] O.V. Batishchev, et al. Phys. Plasmas 4, 1672 (1997).
[8] G. W. Hammett & F. W. Perkins, Phys. Rev. Lett. 64,

3019 (1990).
[9] R. D. Hazeltine, Phys. Plasmas 5, 3282 (1998).

[10] E. D. Held, et al, Phys. Plasmas 11, 2419 (2004).
[11] J. D. Callen & M. W. Kissick, Plasma Phys. Control.

Fusion 39, B173 (1997); D. del-Castillo-Negrete, et al,
Nuclear Fusion 48, 075009 (2008).

[12] D. del-Castillo-Negrete & L. Chacon, Phys. Rev. Lett.

106, 195004 (2011).
[13] K. Bowers, et al. Phys. Plasmas 15, 055703 (2008).
[14] K. Sato, F. Miyawaki, and W. Fukui, Phys. Fluids B 1,

725 (1989).
[15] L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).


