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For phase transitions in dissipative quantum impurity models, the existence of a quantum-to-
classical correspondence has been discussed extensively. We introduce a variational matrix product
state approach involving an optimized boson basis, rendering possible high-accuracy numerical stud-
ies across the entire phase diagram. For the sub-ohmic spin-boson model with a power-law bath
spectrum ∝ ωs, we confirm classical mean-field behavior for s < 1/2, correcting earlier numerical
renormalization-group results. We also provide the first results for an XY-symmetric model of a spin
coupled to two competing bosonic baths, where we find a rich phase diagram, including both critical
and strong-coupling phases for s < 1, different from that of classical spin chains. This illustrates
that symmetries are decisive for whether or not a quantum-to-classical correspondence exists.

Quantum spins in a bosonic environment are model
systems in diverse areas of physics, ranging from dissi-
pative quantum mechanics to impurities in magnets and
biological systems [1]. In this paper we consider the spin-
boson model and a generalization thereof to two baths,
described by Hsb = −~h · ~σ/2 +Hbath, with

Hbath =
∑

i=x,y

∑

q

[

ωqB̂
†
qiB̂qi + λqi

σi

2
(B̂qi + B̂†

qi)
]

. (1)

The two-level system (or quantum spin, with σx,y,z being
the vector of Pauli matrices) is coupled both to an exter-

nal field ~h and, via σx and σy, to two independent bosonic
baths, whose spectral densities Ji(ω) = π

∑

q λ
2
qiδ(ω−ωq)

are assumed to be of power-law form:

Ji(ω) = 2π αi ω
1−s
c ωs , 0 < ω < ωc = 1 . (2)

Such models are governed by the competition between
the local field, which tends to point the spin in the ~h
direction, and the dissipative effects of the bosonic baths.
Indeed, the standard one-bath spin-boson model

(SBM1), obtained for αy = hy = 0, exhibits an in-
teresting and much-studied [1–7] quantum phase tran-
sition (QPT) from a delocalized to a localized phase,
with 〈σx〉 = 0 or 6= 0, respectively, as αx is increased
past a critical coupling αx,c. According to statistical-
mechanics arguments, this transition is in the same uni-
versality class as the thermal phase transition of the
one-dimensional (1D) Ising model with 1/r1+s interac-
tions. This quantum-to-classical correspondence (QCC)
predicts mean-field exponents for s < 1/2, where the
Ising model is above its upper-critical dimension [8, 9].
Checking this prediction numerically turned out to

be challenging. Numerical renormalization-group (NRG)
studies of SBM1 yielded non-mean-field exponents for
s < 1/2 [4], thereby seemingly negating the validity of
the QCC. However, the authors of Ref. 4 subsequently
concluded [10] that those results were not reliable, due
to two inherent limitations of NRG, which they termed
(i) Hilbert-space truncation and (ii) mass flow. Problem

(i) causes errors for critical exponents that characterize
the flow into the localized phase at zero temperature,
since 〈σx〉 6= 0 induces shifts in the bosonic displacements
X̂q = (B̂q + B̂†

q)/
√
2 of the bath oscillators which diverge

in the low-energy limit for s < 1 and hence cannot be ad-
equately described in the truncated boson Hilbert space
used by NRG [11]. Problem (ii) arises for non-zero tem-
peratures, due to NRG’s neglect of low-lying bath modes
with energy smaller than temperature [12]. In contrast
to NRG, two recent numerical studies of SBM1, using
Monte Carlo methods [6] or a sparse polynomial basis
[5], found mean-field exponents in agreement with the
QCC. Nevertheless, other recent works continue to advo-
cate the failure of the QCC [13].

The purpose of this Letter is twofold. First, we show
how the problem (i) of Hilbert-space truncation can be
controlled systematically by using a variational matrix
product state (VMPS) approach formulated on a Wilson
chain. The key idea is to variationally construct an opti-
mized boson basis (OBB) that captures the bosonic shifts
induced by 〈σx〉 6= 0. The VMPS results confirm the
predictions of the QCC for the QPT of SBM1 at T = 0.
(Problem (ii) is beyond the scope of this work.) Second,
we use the VMPS approach to study an XY-symmetric
version of the two-bath spin-boson model (SBM2), with
αx = αy. This model arises, e.g., in the contexts of im-
purities in quantum magnets [14, 15] and of noisy qubits
[14, 16], and displays the phenomenon of “frustration of
decoherence” [14]: the two baths compete (rather than
cooperate), each tending to localize a different compo-
nent of the spin. As a result, a non-trivial intermediate-
coupling (i.e. critical) phase has been proposed to emerge
for s < 1 [15], which has no classical analogue. To date,
the existence of this phase could only be established in an
expansion in (1 − s), and no numerical results are avail-
able. Here we numerically investigate the phase diagram,
and, surprisingly, find that the perturbative predictions
are valid for a small range of s and α only. We conclu-
sively demonstrate the absence of a QCC for this model.

Wilson chain.— Following Refs. 3, 11, which adapted
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Wilson’s NRG to a bosonic bath, we discretize the latter
using a logarithmic grid of frequencies ωki ∝ Λ−k (with
Λ > 1 and k a positive integer) and map Hbath onto a
so-called Wilson chain of (L − 1) bosonic sites:

H(L−1)
bath =

∑

i=x,y

[

√

ηi
π

σi

2
(b̂1i + b̂†1i) (3)

+
L−2
∑

k=1

tki(b̂
†
kib̂k+1,i + h.c.) + ǫkin̂ki

]

.

Here n̂ki = b̂†kib̂ki, with eigenvalue nki, counts the bosons
of type i on chain site k; the detailed form of the hopping
parameters tki, on-site energies ǫki (both ∝ Λ−k), and
the coupling ηi between spin component σi and site 1,
are obtained following Refs. 17, 18. To render a numer-
ical treatment feasible, the infinite-dimensional bosonic
Hilbert space at each site k is truncated by restricting the
boson number to 0 ≤ nki < dk (dk ≤ 14 in Refs. 3, 11).
The standard NRG strategy for finding the ground

state of H(L)
sb = −~h ·~σ/2+H(L−1)

bath is to iteratively diago-
nalize it one site at a time, keeping only the lowest-lying
D energy eigenstates at each iteration. This yields a L-
site matrix-product state (MPS) [19–21] of the following
form (depicted in Fig. 1, dashed boxes):

|G〉 =
∑

σ=↑,↓

∑

{~n}

A0[σ]A1[n1] · · ·AL−1[nL−1]|σ〉|~n〉 . (4)

Here |σ〉 = |↑〉, |↓〉 are eigenstates of σx; the states |~n〉 =
|n1, . . . , nL−1〉 form a basis of boson-number eigenstates
within the truncated Fock space, with n̂ki|~n〉 = nki|~n〉
and 0 ≤ nki < dk. For SBM2, nk = (nkx, nky) labels
the states of supersite k representing both chains. Each
Ak[nk] is a matrix (not necessarily square, but of maxi-
mal dimension D ×D, with A0 a row matrix and AL−1

a column matrix), with matrix elements
(

Ak[nk]
)

αβ
.

The need for Hilbert-space truncation with small dk
prevents NRG from accurately representing the shifts in
the displacements x̂ki = (b̂ki + b̂†ki)/

√
2 that occur in the

localized phase. This problem can be avoided, in prin-
ciple, by using an OBB, chosen such that it optimally
represents the quantum fluctuations of shifted oscillators,
x̂′
ki = x̂ki − 〈x̂ki〉. While attempts to accommodate this

strategy within standard NRG were unsuccessful [11], it
was shown to work well [5] using an alternative represen-
tation of SBM1 using a sparse polynomial basis.
VMPS method.— We now show that an OBB can also

be constructed on a Wilson chain. To this end, view the
state |G〉 of Eq. (4) as a MPS ansatz for the ground state

of H(L)
sb , that is to be optimized variationally using stan-

dard MPS methods [19–21]. To allow the possibility of
large bosonic shifts, we represent the A-matrix elements
as [22–24] (Fig. 1, solid lines)

(Ak[nk])αβ =

dopt−1
∑

ñk=0

(Ãk[ñk])αβV
k
ñknk

(k ≥ 1) . (5)
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FIG. 1: Depiction of the MPS Eq. (4), with each A-matrix

expressed in an optimal boson basis via A = ÃV [Eq. (5)].

Here V k in effect implements a transformation to a new
boson basis on site k, the OBB, of the form |ñk〉 =
∑dk−1

nk=0 V
k
ñknk

|nk〉 with 0 ≤ ñk < dopt. (For SBM2, V k is
a rank-3 tensor.) This ansatz has the advantage that the
size of the OBB, dopt, can be chosen to be much smaller
(dopt . 50) than dk. Following standard DMRG strategy,

we optimize the Ãk and V k matrices one site at a time
through a series of variational sweeps through the Wilson
chain. As further possible improvement before optimiz-
ing a given site, the requisite boson shift can be imple-
mented by hand in the Hamiltonian itself: we first deter-
mine the “current” value of the bosonic shift 〈x̂ki〉 using
the current variational state |G〉, then use it as starting
point to variationally optimize a new |G′〉 with respect to

the shifted Hamiltonian H′(L)
sb (b̂ki, b̂

†
ki) = H(L)

sb (b̂′ki, b̂
′†
ki),

with b̂′ki = b̂ki−〈x̂ki〉/
√
2. The shifted OBB protocol, de-

scribed in detail in Ref. 18, allows shifts that would have
required deffk ≈ 1010 states in the original boson basis to
be treated using rather small dk (we used dk = 100).

Spin-boson model. —We applied the VMPSmethod to
SBM1 (αy = hy = 0), with dissipation strength α ≡ αx

and fixed transverse field hz = 0.1, at T = 0. We focussed
on the QPT between the delocalized and localized phases
in the subohmic case, s < 1. Here, the controversy [4–
6, 10, 13] concerns the order-parameter exponents β and

δ, defined via 〈σx〉 ∝ (α−αc)
β at hx = 0 and 〈σx〉 ∝ h

1/δ
x

at α = αc, respectively. QCC predicts mean-field values
βMF = 1/2, δMF = 3 for s < 1/2 [8], whereas initial NRG
results [4] showed s-dependent non-mean-field exponents.

In Fig. 2a, we show sample VMPS results for 〈σx〉 vs.
(α − αc) for s = 0.3 at hx = 0, where αc was tuned to
yield the best straight line on a log-log plot. The results
display power-law behavior over more than 3 decades,
with an exponent β = 0.50 ± 0.03. Deviations at small
(α−αc) can be attributed to a combination of finite chain
length and numerical errors of VMPS. Fig. 2b shows 〈σx〉
vs. hx at α = αc, and a power-law fit over 6 decades
results in δ = 2.9±0.2. Power laws of similar quality can
be obtained for all s & 0.2 [18, 25] (see [18], Fig. S7).

The exponents β and δ obtained from such fits are
summarized in Figs. 2c,d. For s < 1/2 they are con-
sistent with the mean-field values predicted by QCC,
also found in Monte-Carlo [6] and exact-diagonalization
studies [5], but are at variance with the NRG data of
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FIG. 2: VMPS results for the order parameter of SBM1 near
criticality. a) 〈σx〉 vs. (α−αc) at hx = 0, and b) 〈σx〉 vs. hx at
α = αc, on linear plots (insets) or log-log plots (main panels).
Dashed lines are power-law fits in the ranges between the
vertical marks. c,d) Comparison of the exponents β and δ for
different s obtained from VMPS, NRG [4], mean-field theory,
and, in d), the exact hyperscaling result δ = (1 + s)/(1 − s)
which applies for s > 1/2. (See also [18], Fig. S7).

Ref. 4. Since both NRG and VMPS handle the same mi-
croscopic model H(L)

sb defined on the Wilson chain, but
VMPS can deal with much larger deffk values (. 1010

in Fig. 2) than NRG, the incorrect NRG results must
originate from Hilbert-space truncation, as anticipated
in Ref. 10. Indeed, artificially restricting dk to small val-
ues in VMPS reproduces the incorrect NRG exponents
(see [18], Fig. S6).
Two-bath model. — We now turn to SBM2, a general-

ization of the spin-boson model. Here, the two baths may
represent distinct noise sources [14, 16] or XY-symmetric
magnetic fluctuations [14, 15, 26]. Perturbation theory
shows that the two baths compete: A straightforward
expansion around the free-spin fixed point (α = h = 0)
results in the following one-loop renormalization-group
(RG) equations at ~h = 0:

β(αx) = (1−s)αx−αxαy, β(αy) = (1−s)αy−αxαy. (6)

For α≡ αx = αy, these equations predict a stable inter-
mediate-coupling fixed point at α∗ = 1 − s, describing
a critical phase. It is characterized by 〈~σ〉 = 0, a non-

linear response of 〈~σ〉 to an applied field ~h, and a finite
ground-state entropy smaller than ln 2, all corresponding
to a fluctuating fractional spin [15, 27]. This phase is
unstable w.r.t. finite bath asymmetry (αx 6= αy) and
finite field. It had been assumed [15] that this critical
phase exists for all 0 < s < 1 and is reached for any α.
We have extensively studied SBM2 using VMPS; the

results are summarized in the ~h = 0 phase diagram in
Fig. 3a and the flow diagrams in Fig. 4. Most impor-
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FIG. 3: a) Phase diagram of SBM2 in the s–α plane for
~h = 0, with dissipation strenght α ≡ αx = αy. The critical
phase only exists for s∗ < s < 1, and its boundary αc → ∞
for s → 1−. (Ref. 18 describes the determination of the phase
boundary and gives a 3D sketch of the s-α-hz phase diagram,
see Fig. S8.) b) Tranverse-field response of SBM2, 〈σz〉 ∝

h
1/δ′

z , for four choices of s and α, showing free (diamonds),
critical (squares) and localized (triangles,circles) behavior.

tantly, we find that the critical phase (CR) indeed exists,
but only for s∗ < s < 1, with a universal s∗ = 0.75±0.01.
Even in this s range, the critical phase is left once α
is increased beyond a critical value αc(s), which marks
the location of a continuous QPT into a localized phase
(L) with spontaneously broken XY symmetry and finite
〈σx,y〉. This localized phase exists down to s = 0, Fig. 3a.
It can be destabilized by applying a transverse field hz

beyond a critical value hc
z(α), marking the location of a

continuous QPT into a delocalized phase (D) with unique
ground state (see Ref. [18], Fig. S9). Finally, for s ≥ 1
we only find weak-coupling behavior, i.e., the impurity
behaves as a free spin (F).
In Fig. 3b (and Ref. [18], Fig. S10) we show results

for the transverse-field response, 〈σz〉 ∝ h
1/δ′

z , which can
be used to characterize the different zero-field phases.
〈σz〉 is linear in hz in L (δ′ = 1), sublinear in CR (δ′ >
1), and extrapolates to a finite value in F. For CR, a
perturbative calculation gives 1/δ′ = (1−s)+O([1−s]2)

hz
(a) s* < s < 1

F CR

D

QC1

L

QC2

(b) s < s*

F

D

L

QC2

hz

FIG. 4: Schematic RG flow for SBM2 in the α-hz plane
(hx = hy = 0). The thick lines correspond to continuous
QPT; the full (open) circles are stable (unstable) fixed points,
for labels see text. a) s∗ < s < 1: CR is reached for small α
and hz = 0, it is separated from L by a QPT controlled by
the multicritical QC1 fixed point. Eq. (6) implies that CR is
located at α∗ = 1 − s + O[(1 − s)2]. For finite hz, a QPT
between D and L occurs, controlled by QC2. b) 0 < s <
s∗: both CR and QC1 have disappeared, such that the only
transition is between D and L.
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[15] (confirmed numerically in Ref. [18], Fig. S11b), while
the linear response in L corresponds to that of an ordered
XY magnet to a field perpendicular to the easy plane.
From the VMPS results, we can schematically con-

struct the RG flow, Fig. 4. There are three stable RG
fixed points for s∗ < s < 1, corresponding to the L, D,
and CR phases. From this we deduce the existence of two
unstable critical fixed points, QC1 and QC2, controlling
the QPTs (Fig. 4a). Eq. (6) predicts that, as s → 1−,
CR merges with F; this is consistent with our results for
δ′ which indicate δ′ → ∞ as s → 1− (Ref. 18, Fig. S11b).
The behavior of the phase boundary αc in Fig. 3a sug-
gests that QC1 moves towards α = ∞ for s → 1−. Thus,
for s ≥ 1 only F is stable on the ~h = 0 axis. Conversely,
from Eq. (6) and Fig. 3a we extract that, upon lowering
s, CR (QC1) moves to larger (smaller) α. From the ab-
sence of CR for small s we then conclude that CR and
QC1 merge and disappear as s → s∗+. Consequently, for
s < s∗ we have only D and L as stable phases, separated
by a transition controlled by QC2, Fig. 4b. The merger of
CR and QC1 at s = s∗ also implies that the phase bound-
ary between CR and L in Fig. 3b at s∗ is vertical at small
α (Ref. [18], Sec. V.C), because the merging point on the
α axis defines the finite value of αc at s → s∗+.
Taken together, the physics of SBM2 is much richer

than that of a classical XY-symmetric spin chain with
long-range interactions, which only shows a single ther-
mal phase transition [28]. Given this apparent failure of
QCC for SBM2, it is useful to recall the arguments for
QCC for SBM1: A Feynman path integral representation
of Eq. (1), with non-zero hz, can be written down using
eigenstates of both σx and σz . Integrating out the bath
generates a long-range (in time) interaction for σx. Sub-
sequently, the σz degrees of freedom can be integrated
out as well, leaving a model formulated in σx only. Re-
interpreting the σx values for the individual time slices
in terms of Ising spins, one arrives at a 1D Ising chain
with both short-range and 1/r1+s interactions, with the
thermodynamic limit corresponding to the T → 0 limit of
the quantum model. Repeating this procedure for SBM2
with ~h = 0, one obtains a Feynman path integral in terms
of eigenstates of σx and σy . Importantly, both experience
long-range interactions and hence neither can be inte-
grated out. This leads to a representation in terms of two
coupled Ising chains. However, upon re-exponentiating
the matrix elements, the coupling between the two chains
turns out to be imaginary, such that a classical interpre-
tation is not possible [29]. In other words, a Feynman
path-integral representation of SBM2 leads to negative
Boltzmann weights, i.e., a sign problem.
Conclusion. — Our implementation of OBB-VMPS

on the Wilson chain brings the Hilbert-space truncation
problem of the bosonic NRG under control and allows for
efficient ground-state computations of bosonic impurity
models. We have used this to verify the QCC in SBM1
and to determine the phase diagram of SBM2, which is

shown to violate QCC. This underlines that symmetries
are decisive for whether or not a QCC exists. A detailed
study of the QPTs of SBM2 is left for future work.
The results for SBM2 also show that the predictions

from weak-coupling RG are not valid for all parameters
and bath exponents, in contrast to expectations. This
implies that studying a three-bath version of the spin-
boson model, which is related to the physics of a mag-
netic impurity in a quantum-critical magnet [15, 27], is
an interesting future subject.
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