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We investigate the zero-temperature phase diagram of interacting Bose gases in the presence of a
simple cubic optical lattice, going beyond the regime where the mapping to the single-band Bose-
Hubbard model is reliable. Our computational approach is a new hybrid quantum Monte Carlo
method which combines algorithms used to simulate homogeneous quantum fluids in continuous
space with those used for discrete lattice models of strongly correlated systems. We determine
the critical interaction strength and optical lattice intensity where the superfluid-to-insulator tran-
sition takes place, considering also the regime of shallow optical lattices and strong inter-atomic
interactions. The implications of our findings for the super-solid state of matter are discussed.
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In quantum many-body systems, the interplay between
inter-particle interactions and commensurability effects
in external periodic potentials can induce a transition
from a conducting (or superconducting) to an insulating
phase, where particles are localized around the minima
of the periodic potential. This phenomenon (known as
Mott transition) is responsible for the insulating behavior
of several transition metal compounds [1]. Recently, the
Mott transition has been induced in a controlled way in
both bosonic [2] and fermionic [3, 4] atomic gases trapped
in optical lattices, which are being used as quantum em-
ulators to explore the intriguing properties of strongly
correlated materials [5].

Previous theoretical studies of cold atomic gases in op-
tical lattices are based on single-band lattice models, such
as the Bose- or Fermi-Hubbard models [6]. These theo-
ries are limited to the regime of large optical lattice inten-
sity - since excited Bloch bands are neglected [6] - and
weak interactions, since the true inter-atomic potential
is replaced by a non-regularized δ-function, which corre-
sponds to the first Born approximation for the scattering
problem. The role of higher Bloch bands have been con-
sidered is Refs. 7, 8 (using the non-regularized pseudopo-
tential), resulting in effective single-band models with
density-dependent Hubbard parameters or many-body
interactions. The description of interactions beyond the
first Born approximation is a challenge, since more accu-
rate pseudopotentials such as the regularized δ-function
induce virtual transitions to an extremely large number
of Bloch bands [9]. The validity of the single-band ap-
proximation has been questioned on a even more pro-
found level by P. W. Anderson [10, 11], in particular con-
cerning the existence of a bosonic Mott insulator. One
central issue is the presence of nodes in the ground-state
wave function of the bosonic Mott phase in the single
band Hubbard model, since this is built on the basis of
orthogonal - hence non-positive definite - Wannier func-
tions. P. W. Anderson further argues that when all Bloch
bands are included the superfluid component is always fi-
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FIG. 1: (color online). Zero-temperature phase diagram as
a function of the optical lattice intensity V0/Er and the s-
wave scattering length as/d at unit filling. Er is the recoil
energy and d is the optical lattice periodicity. The red points
indicate the transition from the superfluid (green region) to
the insulating phase (blue region) for hard-sphere particles.
The solid gray curve is the phase boundary of the single-band
Bose-Hubbard model [28] (for a non-regularized δ-function
interaction [6]). The dashed yellow curve is the multi-orbital
model of Ref. [7] (obtained within mean-field approximation).
The black diamonds are the experimental results of Ref. [12].
The solid red curve is a guide to the eye, the dashed red curve
is an extrapolation towards the freezing point without optical
lattice (red vertical arrow). See the text for other scenarios
that are possible in this regime.

nite, implying that the solid phase is a supersolid.

In this Letter we map out the zero-temperature and
continuous-space phase diagram of a Bose gas with short-
range interactions in a simple cubic optical lattice at a
density of one particle per unit cell (see Fig. 1), using
a new numerically exact hybrid quantum Monte Carlo
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technique which permits to simulate the ground state of
interacting Bose gases in arbitrarily weak or strong peri-
odic potentials. Our main goal is to uncover the physics
of the Mott transition in this continuous-space system,
going beyond approximate discrete lattice models. We
find a superfluid-to-insulator quantum phase transition,
calculate the critical optical lattice intensity as a function
of the s-wave scattering length, and compare our results
to an experiment performed with an ultracold gas of Cs
atoms [12], finding good agreement (see Fig. 1).
Bosons in an optical lattice are described by the

continuous-space Hamiltonian

Ĥ = −
~
2

2m

N
∑

i=1

[

∇2
i + V (ri)

]

+
∑

i<j

v (rij) , (1)

where m is the atomic mass, the indexes i and j label the
N particles at positions ri, and rij = ri − rj . The op-

tical lattice potential is V (r) = V0
∑

α=x,y,z sin
2 (πα/d),

where V0 is the intensity of the laser beams that create
the lattice and d is half the wave-length.
The third term in Eq. (1) describes the two-body in-

teractions. Different models for the inter-particle interac-
tions can be considered, including potentials with a hard-
core or with long-range interactions. One specific poten-
tial we use is the hard-sphere (HS) potential vHS (r) = ∞,
if r < as and 0 otherwise. The diameter of the sphere is
equal to the s-wave scattering length as, which is the pa-
rameter that characterizes the strength of interactions in
dilute gases at low temperature. To quantify the role of
other details of the inter-particle potential, which become
relevant at high scattering energies and at short inter-
particle distances, we also employ different models with
the same s-wave scattering length, the negative-power
potentials (NP) vNP(r) = c/rp, with c > 0 and the inte-
ger p > 3 [13]. We do not consider attractive potentials
supporting bound states, such as those used to model
Feshbach resonances [14], since in this case the possible
metastable gas-like phase is not the ground state.
To map out the phase diagram we employ a new algo-

rithm combining the stochastic integration of variational
trial wave-functions defined on a discrete lattice with an
imaginary-time propagation in continuous space. The
ground-state properties of a homogeneous quantum fluid
(V (r) = 0) can be obtained using the ground-state path-
integral Monte Carlo method [15] (GSPI), where the ex-

pectation value of a generic operator Ô is obtained as

〈Ô〉 =

∫

dRdR′Ψ∗
T (R) e−

β
2
ĤÔe−

β
2
ĤΨT (R′)

∫

dRdR′Ψ∗
T (R) e−βĤΨT (R′)

, (2)

where R = (r1, . . . , rN ). For a sufficiently long imagi-
nary time β, this expression gives the exact ground-state
result provided that the trial wave function ΨT (R) has a
finite overlap with the ground state. The imaginary-time

evolution operator exp
(

−β/2Ĥ
)

can be represented in

the form of a discretized path integral using the Trotter

break-up, and the resulting multi-variates integral can
be evaluated using standard Monte Carlo sampling tech-
niques [16, 22]. However, the simulation of the strongly
correlated regime in a periodic potential with the GSPI
method is unfeasible with standard trial wave functions.
We thus combine the GSPI algorithm with the stochastic
sampling of variational wave-functions defined on a dis-
crete lattice. The lattice wave function is characterized
by the occupation numbers of a set of orbitals localized
at the nodes of the lattice. Determining the expecta-
tion value (2) with such trial wave functions requires the
sampling of those quantum numbers together with the
continuous-space coordinates R, as explained below.

As lattice wave function we use a bosonic Gutzwiller
ansatz with contact interaction [17, 18] φ (l1, . . . , lN) =

exp
[

−γ
∑

i<j δlilj

]

, where δlilj is the Kronecker delta, γ

is a variational parameter and l refers to one of the sites of
a simple cubic lattice. For the localized orbitals we con-
sider a (positive definite) Gaussian approximation of the
Wannier functions wl(r) =M−1/2

∑

k exp (−ik · l) bk(r),
where M is the number of lattice sites and bk (r) is the
Bloch function of the lowest band with quasi-momentum
k. For a given lattice configuration L = (l1, . . . , lN), the
coordinate-space wave function corresponding to φ (L)

is ψL (r1, . . . , rN ) =
∏N

i=1 wli (ri), so that the combined
trial wave function is ΨT (R) =

∑

L φ (L)ψL (R), where
the sum goes over all lattice configurations L. To im-
prove ΨT beyond the contact-interaction ansatz we in-
troduce a Jastrow term χ (R) =

∏

i<j f (rij), giving a fi-

nal trial wave function ΨT (R) = χ (R)
∑

L φ (L)ψL (R).
The Jastrow correlation function [19] f (r) is set equal to
the free-space solution of the two-body problem up to
a cutoff distance rc, and equal to 1 for |r| > rc, as in
Ref. 21. With this choice, the short-range correlations
due to the hard-core of the inter-atomic interaction v (r)
are treated exactly in the trial state ΨT, while the long-
range correlations can be efficiently reproduced by the
imaginary-time propagation. The time evolution also in-
cludes the effect of the higher Bloch bands.

To evaluate the right-hand side of Eq. (2) we need
to perform a stochastic sampling over the lattice con-
figurations

∑

L and the particle coordinates
∫

dR. This
requires a random walk in the combined configuration
space {L,R}, which we perform using local Monte Carlo
updates on the lattice index li and the space coordinate
ri of a given particle i.

In the present problem, the bosonic statistics plays a
central role. The trial state ΨT is by construction sym-
metric under particle exchange, and the imaginary-time
propagation is symmetrized by performing particle per-
mutations using the worm algorithm [22]. These permu-
tations can efficiently introduce more exotic short-range
correlations which are not explicitly included in the trial
wave-function ΨT [23, 24].

For some specific values of γ the trial state ΨT re-
produces wave-functions that have previously been used.
When γ → 0, ΨT converges to the “periodic+Jastrow”
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FIG. 2: (color online). Main panel: Condensate fraction vs.
optical lattice intensity for HS with as = 0.3d (blue bullets).
The black solid line is a linear fit used to extract the critical
point V c

0 . The yellow square at V0 = 0 is the diffusion Monte
Carlo result of Ref. [21]. Inset: finite-size scaling analysis of
n0, L is the simulation-box size. The black solid line is the
scaling behavior expected at the critical point: n0 ∝ L−2.

wave-function ΨT (R) ≃ χ (R)
∏

i bk=0 (ri) [26] (ignor-
ing an irrelevant normalization coefficient). This wave
function accurately describes the ground state of a su-
perfluid Bose gas in a periodic potential. In the oppo-
site limit γ → ∞ one obtains a symmetrized state with
one particle per site [25] (we consider the case N = M)
ΨT (R) ≃ χ (R)

∑

P(L)

∏

iwp(li) (ri), where the sum

runs over the N ! permutations P(L) = (p(l1), . . . ,p(lN ))
of N particles in M = N lattice sites. In numerical
studies of bulk Helium-4, a state analogous to this was
introduced in order to describe a potential super-solid
ground state [26, 27], where superfluidity coexists with
diagonal long-range order (in this context it is referred to
as “permanent+Jastrow”, and the Wannier functions are
replaced by effective localized orbitals). However, it has
never been implemented in other exact quantum Monte
Carlo methods such as the diffusion Monte Carlo because
of the difficulty of performing random walks in permu-
tation space. In the context of the single-band Bose-
Hubbard model, the Gutzwiller ansatz φ (L) predicts, in
the limit γ → ∞, a quantum phase-transition from a su-
perfluid to an insulating solid [17, 18]. This transition
is also seen by exact lattice quantum Monte Carlo sim-
ulations [28]. Here we study this transition in the full
Hilbert space of the continuum model, and investigate
deviations from the single-band lattice model.

We identify the superfluid phase by measuring the con-
densate fraction [20], which is efficiently evaluated in the

worm algorithm as n0/n = lim|r−r′|→∞〈Ψ̂† (r′) Ψ̂ (r)〉,

where Ψ̂† (Ψ̂) is the creation (annihilation) field oper-
ator. The results for the HS potential with as = 0.3d
are shown in Fig. 2. In the homogeneous limit V0 = 0,
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FIG. 3: (color online). Main panel: condensate fraction
vs. s-wave scattering length as for different model potentials.
The optical lattice intensity is V0 = 3Er. Inset: condensate
fraction as a function of the variational parameter γ. Here
V0 = 3.5Er and as = 0.3d. The curves corresponding to dif-
ferent imaginary times β cross at the optimal γ.

we find agreement with the diffusion Monte Carlo pre-
diction of Ref. 21 (yellow square). By increasing V0,
the condensate fraction decreases monotonically. Close
to a critical optical lattice intensity (call it V c

0 ), n0

approaches zero linearly, consistently with the scaling
law of the order-parameter in the Bose-Hubbard model

〈Ψ̂†(r)〉 =
√

n0/n ≈
[

(V0 − V C
0 )/V C

0

]β
, where β = 1/2

(plus logarithmic correction) [29]. With a linear extrapo-
lation to n0 = 0 (black solid line in Fig. 2) we obtain the
critical value V c

0 /Er = 3.95(10), where Er = ~
2π2/2md2

is the recoil energy. Different extrapolation procedures
yield compatible results. In order to better identify the
quantum phase transition we perform a finite-size scaling
analysis. In the inset of Fig. 2 we show n0/n as a function
of the simulation-box size L (we employ periodic bound-
ary conditions) for different values of V0. While slightly
away from V c

0 the condensate fraction rapidly saturates
to the thermodynamic limit, close to the critical point
the scaling of n0/n approaches the power-law n0 ∝ L−2,
which is indeed the scaling expected for the order param-
eter squared [29].
In the vicinity of the critical point V c

0 , the imaginary
time β required to converge to the ground state scales
with the size of the system. Hence, an accurate opti-
mization of ΨT is important to avoid a possible bias due
to the variational ansatz. Rather than by minimizing
the ground-state energy, this optimization is achieved
more conveniently with a finite imaginary-time scaling
analysis, as shown in the inset of Fig. 3. The values of
n0/n obtained with a small imaginary time β show a
clear dependence on the variational parameter γ. This
dependence vanishes for larger β. The crossing point of
the curves of n0/n vs. γ corresponding to different values
of β provides the optimal value of γ which removes the
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residual finite imaginary-time effects.

In the phase diagram of Fig. 1 we show V c
0 as a func-

tion of as. In the region V0 < V c
0 the condensate fraction

is finite and the system is superfluid. The region where
n0 = 0 is instead identified as an insulating phase. The
phase boundary obtained with the HS potential (red cir-
cles) is compared to that of the Bose-Hubbard model [28]
(lower solid gray curve), based on the mapping to single-
band models described in Ref. [6]. For as . 0.3d and
V0 & 4Er, the two models follow the same trend, with
small discrepancies due to the effect of higher Bloch
bands, and to the different models for the inter-atomic
potential (HS vs. non-regularized delta). The exper-
imental data [12] (blak-diamonds) are consistent with
both the continuum and lattice model, but are in better
agreement with our continuummodel. The yellow dashed
curve in Fig. 1 corresponds to a Bose-Hubbard model
with occupation-number dependent parameters due to
multi-orbital effects, solved within mean-field approxi-
mation (from Ref. [7]), and clearly simulations going be-
yond mean-field will be important to compare this model
to our continuum results.
In the regime as & 0.3d the HS result bends down,

as one approaches the freezing density of hard-spheres in
free space V (r) = 0 [30] (red vertical arrow). This re-
gion of the phase diagram could host more exotic phases,
like a quantum-glassy phase eventually coexisting with
superfluidity, due to the competition between the spatial
symmetry of the optical lattice (simple cubic) and that of
the hard-spheres crystal in free space (face-centered cu-
bic). We leave the investigation of these issues to future
work.
In this part of the phase diagram universality in terms of
as is lost and also other details of the inter-atomic poten-

tial become important. We quantify these non-universal
effects in Fig. 3 (main panel) by comparing the results
for n0/n vs. as/d (at fixed V0 = 3Er) obtained with
different model potentials. The data corresponding to
HS (black squares) and to NP with n = 9 (blues circles)
agree within 10% up to as = 0.3d, indicating a large de-
gree of universality. As expected, the data for NP with
n = 6 (cyan triangle) show larger deviations. Notice
that for n < 6 the effective range diverges [31]. In the
limit as → 0, n0/n converges to n0/n = 0.833, which is
the square of the overlap between the condensate wave-
function (the Bloch state with k = 0) and the plane wave
with zero momentum.

Our results for the Mott transition in a continuous-
space system of bosons with short-ranged interactions
can be useful to extend experiments performed with ul-
tracold gases to the regime of strong interactions and
weak optical lattices, that is beyond the physics of the
Hubbard model. While the existence of a quantum
phase transition in the single-band model was rigorously
proven [32], our findings indicate that quantum critical
behavior persists when all Bloch bands are included, in
contrast to the arguments of P. W. Anderson [10, 11].
The hybrid lattice-continuum quantum Monte Carlo

method presented in this work can also be extended
to fermionic models and be combined with fixed-node
and transient-estimate techniques. This will provide a
new approach for the simulation of strongly correlated
fermionic systems in weak optical lattices.
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