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Observation of a free-Shercliff-layer instability in cylindrical geometry
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We report on observations of a free-Shercliff-layer instability in a Taylor-Couette experiment using
a liquid metal over a wide range of Reynolds numbers, Re ∼ 103 − 106. The free Shercliff layer is
formed by imposing a sufficiently strong axial magnetic field across a pair of differentially rotating
axial endcap rings. This layer is destabilized by a hydrodynamic Kelvin-Helmholtz type instability,
characterized by velocity fluctuations in the r − θ plane. The instability appears with an Elsasser
number above unity, and saturates with an azimuthal mode number m which increases with the
Elsasser number. Measurements of the structure agree well with 2D global linear mode analyses
and 3D global nonlinear simulations. These observations have implications for a range of rotating
MHD systems in which similar shear layers may be produced.

The destabilization of rotating sheared flows by an ap-
plied magnetic field in magnetohydrodynamics (MHD)
is a topic with astrophysical and geophysical implica-
tions, and has been the subject of a number of exper-
imental and theoretical efforts. Such destabilization can
be caused by the magnetorotational instability (MRI), in
which a magnetic field of sufficient amplitude can desta-
bilize Rayleigh-stable rotating sheared flows [1]. In this
Letter, we report the observation of an instability which,
like the MRI, appears in a sheared rotating fluid when a
magnetic field is applied. But rather than playing a role
in the dynamics of the instability, as in the case of the
MRI, the magnetic field here acts to establish free shear
layers which extend from axial boundaries and which are
subject to a hydrodynamic instability.

Hartmann and Shercliff laid the groundwork in under-
standing the effect of magnetic fields on shear layers in
conducting fluids. Hartmann studied boundary layers
normal to an external applied field [2], and Shercliff ex-
tended his analysis to include boundary layers parallel to
the applied field [3]. Free Shercliff layers can be estab-
lished in rotating MHD systems when the line-tying force
of an axial magnetic field extends a discontinuity in an-
gular velocity at an axial boundary into the bulk of the
fluid. These shear layers are similar to the Stewartson
layers that extend from discontinuous shearing bound-
aries in rapidly rotating systems [4], but for the free Sher-
cliff layer discussed here, it is the magnetic field tension
rather than the Coriolis force that leads to equalization
of the angular velocity in the axial direction.

Free Shercliff layers were first realized experimentally
by Lehnert in a cylindrical apparatus with a free sur-
face at the top and a rotating ring at the bottom axial
boundary [5]. Lehnert observed the formation of vortices
at the location of the shear layers, though he attributed
their formation to discontinuities in the free surface at
the shear layer location rather than to the shear itself.
These layers were then described analytically by Bragin-
skii [6]. The formation of free Shercliff layers in a cylin-
drical Taylor-Couette device has been predicted compu-

tationally [7], but these simulations were axisymmetric
and thus incapable of evaluating the stability of these
shear layers to nonaxisymmetric perturbations.
Both free Shercliff layers and Stewartson layers can be

present at the tangent cylinder of spherical Couette sys-
tems. The Kelvin-Helmholtz destabilization of these lay-
ers has been studied extensively through computation [8–
10]. Stewartson layers have been observed experimen-
tally in spherical and cylindrical geometry and are found
to be unstable to nonaxisymmetric modes, which is con-
sistent with simulations [9, 11, 12].
The Princeton MRI experiment is a Taylor-Couette ap-

paratus consisting of two coaxial stainless steel cylinders
as shown in Figure 1. The gap between the cylinders
is filled with a GaInSn eutectic alloy which is liquid at
room temperature. Differential rotation of the cylinders
sets up a sheared rotation profile in the fluid. If the cylin-
ders were infinitely long, the fluid between the cylinders
would assume an angular velocity Ω at a radius r match-
ing the ideal Couette solution, Ω(r) = a + b/r2. The
constants a and b are found by matching the solution to
the imposed rotation rates at the inner and outer cylin-
der boundaries. In conventional Taylor-Couette devices,
the endcaps are typically corotated either with the in-
ner or outer cylinder. This produces strong secondary
circulation and angular momentum transport to the ax-
ial boundaries, resulting in a deviation from the ideal
rotation profile [14]. A novelty of this apparatus is the
configuration of the axial endcaps, each of which is split
into two differentially-rotatable acrylic rings, giving four
independent rotation rates: those of the inner cylinder,
outer cylinder, inner rings, and outer rings. In previ-
ous experiments using water as the working fluid, this
configuration was very effective at reducing the influence
of the axial boundaries, allowing the generation of quies-
cent flows in the bulk of the fluid with Reynolds numbers
Re = Ω1r1(r2 − r1)/ν above 106 [15]. The experimental
parameters are shown in Table I.
Fluid velocities are measured with an Ultrasound

Doppler Velocimetry (UDV) system[16, 17]. Ultrasonic
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FIG. 1: Diagram of Princeton MRI experiment. Each endcap
is split into an inner ring (IR) and an outer ring (OR). Differ-
ential rotation of these rings produces a discontinuity in the
angular velocity at the axial boundary. Overlaid on the right
half of the figure is a plot of the shear (r/Ω)(∂Ω/∂r) from a
nonlinear MHD simulation with differential rotation between
the endcap rings and a strong axial magnetic field [13]. The
free Shercliff layers are the regions of strong negative shear
extending from the interface between the rings.

transducers are mounted on the outer cylinder at the
midplane of the experiment. A transducer aimed radially
and others aimed tangential to the inner cylinder allow
determination of the radial and azimuthal velocity com-
ponents. Two tangential transducers aimed identically
but separated azimuthally by 90◦ provide information
about azimuthal mode structure.
A set of six solenoidal coils applies an axial magnetic

field to the rotating fluid. Fields below 800 Gauss can be
applied indefinitely, while the application time for higher
fields is limited by the resistive heating of the coils. An
array of 72 magnetic pickup coils placed beyond the outer
cylinder measures ∂Br/∂t.
Experiments were run using both Rayleigh-stable and

-unstable flow states. The Rayleigh-stable states had
component rotation speeds in the ratio [1.0, 0.55, 0.1325,
0.1325] for the inner cylinder, inner ring, outer ring,
and outer cylinder, respectively. The ideal Couette so-
lution for these inner and outer cylinder speeds satis-
fies Rayleigh’s stability criterion that the specific angular
momentum increase with radius: ∂(r2Ω)/∂r > 0. The
ring speeds were chosen empirically to generate an az-
imuthal rotation profile in the hydrodynamic case that

TABLE I: Parameters of the apparatus [18] and liquid metal
working fluid [19].

Parameter symbol value units

Height h 27.9 cm

Inner cylinder radius r1 7.06 cm

Outer cylinder radius r2 20.3 cm

Density ρ 6.36 g/cm3

Kinematic viscosity ν 2.98× 10−3 cm2/s

Magnetic diffusivity η 2.57× 103 cm2/s

Inner cylinder rotation rate Ω1 0.25 - 800 rpm

Axial magnetic field B 0 - 4500 Gauss

closely matches the ideal Couette profile at the midplane.
The Rayleigh-unstable states were generated using com-
ponent speeds in the ratio [1.0, 1.0, 0, 0]. These flows vi-
olate Rayleigh’s criterion and exhibit large velocity fluc-
tuations in the absence of a magnetic field.

A single run of this experiment starts with an acceler-
ation phase of two minutes, during which the sheared
azimuthal flow develops. The axial magnetic field is
then applied, initially resulting in the damping of hy-
drodynamic fluctuations. If the magnetic field is strong
enough to satisfy the requirement that the Elsasser num-
ber Λ = B2/4πρη∆Ω > 1, where ∆Ω is the difference
between the inner- and outer-ring rotation rates, the in-
stability grows up as a large-scale coherent mode. It man-
ifests itself as a fluctuation in the radial velocity and az-
imuthal velocity, where significant perturbations of more
than 10% of the inner cylinder speed are observed. An ul-
trasonic transducer inserted on a probe and aimed axially
at an endcap did not measure axial velocity fluctuations
when the instability was excited, suggesting that the flow
due to the instability is purely in the r − θ plane. Cor-
related magnetic fluctuations are observed at the highest
rotation rates and applied fields. The instability develops
on both the Rayleigh-stable and -unstable backgrounds,
and typical mode rotation rates exceeds the outer cylin-
der rotation rate Ω2 by ∼ 0.1(Ω1 − Ω2).

The instability was observed over a range of more
than three orders of magnitude in rotation rate in the
Rayleigh-unstable configuration, as shown in Figure 2,
with Re = 820 − 2.6 × 106. The instability is present
even with a magnetic Reynolds number Rm = Ω1r1(r2−
r1)/η ∼ 10−3, indicating an inductionless mechanism in
which induced magnetic fields are dynamically unimpor-
tant.

For Λ of order one, the primary azimuthal mode num-
ber at saturation is m = 1, with phase-locked higher-
order modes numbers typically present at a smaller am-
plitude. The measured mode structure is shown in Fig-
ure 3. It is common for an m = 2 mode to grow up before
an m = 1 dominates at saturation. High-Λ scenarios at
very slow rotation rates show that m at saturation in-
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FIG. 2: Stability diagram for the Rayleigh-unstable back-
ground flow state. The area of the circles is proportional to
the power in the dominant Fourier harmonic measured by a
tangential transducer at r = 19.2cm, normalized to the square
of the inner cylinder speed. The ‘x’s indicate stability. The
stability diagram for the case starting from a Rayleigh-stable
background is similar, but was measured over a smaller range
of speeds. The inset plot shows a sample time trace of the
velocity measured at one point in the flow, with the magnetic
field applied in the region between the dashed vertical lines.

creases as Λ increases. Primary mode numbers up to
m = 5 have been observed with Λ = 127 at a rotation
rate of 0.25 rpm.
The necessity of shear at the axial boundary has been

verified experimentally. Experiments were performed
with the components rotating in the standard Rayleigh-
stable configuration, but with a number of different in-
ner ring speeds. The critical magnetic field for instability
varied with the differential rotation between the endcap
rings as expected. When the inner rings and and outer
rings corotated, the instability was not observed.

The free shear layer has been measured experimentally
at low Re and high Λ where it penetrates to the midplane
of the experiment as shown in Figure 4. The width of the
layer measured at a time just before the onset of insta-
bility is consistent with the expected width scaling for
a Shercliff layer δ ∼ 1/

√
M , where the Hartmann num-

ber M = Bl/
√
4πρην and l = r2 − r1 is a characteristic

length. The onset of the instability is associated with a
decrease in the mean shear in this layer.
Nonlinear numerical MHD simulations have been per-

formed with the HERACLES code [20], modified to in-
clude finite viscosity and resistivity [13]. The simula-
tions were performed in the experimental geometry with
a 200x64x400 grid in r̂, θ̂, and ẑ, with Re = 4000 and
a range of Rm and M . These simulations show the for-
mation of the free Shercliff layer extending from the dis-
continuity at the axial boundaries, as shown in Figure 1.
The axial length of the shear layer scales with

√
Λ, which

seems to arise from a competition of magnetic forces,

FIG. 3: Comparison of measured unstable mode with results
from simulation. All are contour plots of azimuthal velocity
at the midplane with the m = 0 contribution subtracted. Red
indicates positive velocity, and blue indicates negative veloc-
ity. Upper left: Experimental measurement with Λ = 1.4,
reconstructed from projecting the time behavior of the az-
imuthal velocity as measured by one UDV transducer onto
the r−θ plane. Upper right: Experimental measurement with
Λ = 50. Lower left: Growing m = 1 mode produced by a hy-
drodynamic linear stability analysis of an axially-independent
shear layer. Lower right: Unstable mode from nonlinear MHD
calculation with Re = 4000, Rm = 10, and Λ = 1.

which act to extend the shear layer into the fluid, and
poloidal circulation generated by the axial boundaries,
which acts to disrupt the free shear layer. The simula-
tions also produce an instability requiring Λ > 1 for on-
set and suggest that a minimum penetration depth of the
shear layer is required for development of the instability.
Like the experimental observations, the unstable modes
exhibit a spiral structure, and a cascade is observed from
higher azimuthal mode number during the growth phase
of the instability to a dominant m = 1 at saturation.
A global linear stability analysis was performed to in-

vestigate unstable modes in the experimental geometry.
The analysis found eigenvalues of the linearized nonideal
MHD equations discretized across 2048 grid cells in the
radial direction, assuming sinusoidal azimuthal depen-
dence with a specified mode number and no axial depen-
dence. Unstable hydrodynamic solutions were sought for
realistic fluid parameters and for a zeroth-order, back-
ground rotation profile consisting of a free shear layer
represented by a hyperbolic tangent centered between
the inner and outer cylinders. Angular velocity profiles
with a sufficiently narrow shear layer were found to be
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FIG. 4: Angular velocity versus radius at the midplane for
several values of applied fields at a rotation rate of 0.5 rpm
in the Rayleigh-unstable configuration. The dashed line in-
dicates the radial position of the split between the axial end-
caps. The inset plot shows measurements of the shear layer
thickness from experiments at 0.25 rpm (green) and 0.5 rpm

(blue) versus the Hartmann number M . M = 55
√
Λ at 0.5

rpm, and M = 39
√
Λ at 0.25 rpm. The solid line indicates

the expected Shercliff layer width scaling δ ∼ d/
√
M , where

the constant d = 62cm has been chosen to match the data.

hydrodynamically unstable to nonaxisymmetric Kelvin-
Helmholtz modes with a very similar structure to those
observed experimentally. The most unstable mode num-
ber increases with decreasing shear layer width, similar
to the experimental observations of the saturated states.

The results presented here describe a minimum mag-
netic field required for onset of the instability. Simu-
lations have shown that a sufficiently strong magnetic
field will restabilize this instability, similar to the simu-
lation results in spherical geometry [8]. Experimentally,
the decreasing saturated amplitude with increasing field
at small rotation rates, shown in Figure 2, suggests that
this critical field strength is being approached. But the
limits on controllable slow rotation and and on the avail-
ability of strong magnetic fields precluded verification of
the complete restabilization.

This free-Shercliff-layer instability exhibits strong sim-
ilarities to the expected behavior of the standard MRI
in a Taylor-Couette device because in both cases a mag-
netic field acts to destabilize otherwise stable flow and in
both cases the associated angular momentum transport
results in a large modification to the azimuthal velocity
profile. But this instability is a hydrodynamic instability
on a background state established by the magnetic field
and is present with Rm ≪ 1. While there are induction-
less relatives of the standard MRI, such as the so-called
HMRI which relies on azimuthal and axial applied mag-
netic fields [21, 22], the unimportance of induction here is
in stark contrast to the requirement of a finite minimum
Rm for the standard MRI in an axial magnetic field.

These results have particular relevance to other MHD
experiments in which similar shear layers may be estab-
lished. A spherical Couette MHD experiment produced a
non-axisymmetric instability with applied magnetic field
that was identified as the MRI [23]. However, subse-
quent simulations have attributed those observations to
hydrodynamic instability of free shear layers [24, 25], sim-
ilar to the observations that we report. We expect that
other cylindrical devices, such as the PROMISE 2 exper-
iment [26], could produce this instability. But the critical
value of Λ will likely change for experiments with differ-
ent geometric aspect ratios.

The free-Shercliff-layer instability is not expected to
impact the study of the MRI in this device since the
magnetic fields required for the MRI are weaker than
those required for the Shercliff layer instability at MRI-
relevant speeds [13].
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