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We show that in the collision of two superfluid fermionic atomic clouds one observes the formation
of quantum shock waves as discontinuities in the number density and collective flow velocity. Domain
walls, which are topological excitations of the superfluid order parameter, are also generated and
exhibit abrupt phase changes by π and slower motion than the shock waves. The domain walls are
distinct from the gray soliton train or number density ripples formed in the wake of the shock waves
and observed in the collisions of superfluid bosonic atomic clouds. Domain walls with opposite phase
jumps appear to collide elastically.
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Quantum shock waves (qsw) and solitons have been
observed in a dilute atomic Bose gas a decade ago [1], a
result which generated a flurry of experimental and the-
oretical work [2–5]. In classical hydrodynamics, shock
waves appear as discontinuities in density, flow velocity,
temperature and other characteristics of the fluid. In
a fluid in motion one can observe another remarkable
structure, solitons. Solitons are usually a manifestation
of the competition between the dispersive mechanisms
and nonlinearities at work in a fluid. While dispersion
effects tend to smooth out discontinuities, nonlinearities
sometimes oppose this effect instead, stabilizing a large
local density variation [6] that leads to the appearance
of a bright, dark or a gray soliton. The quantum fluid
dynamics of a superfluid dilute atomic Bose gas is typi-
cally described using the nonlinear Gross-Pitaevskii (gp)
equation, and at sufficiently low temperatures there does
not appear to be any need for dissipative processes. The
accurate treatment of the real-time dynamics of a super-
fluid Unitary Fermi Gas (ufg) requires a more complex
approach, using an extension of the Density Functional
Theory (dft) to superfluid systems and time-dependent
phenomena, see Refs. [7–11].
Recently, a new experiment reported on the observa-

tion of qsw in a ufg [12]. The ufg is a system exactly
in the middle of the bcs-bec crossover and as such its
properties often qualitatively interpolate between those
of a Fermi and a Bose superfluid. However, while BCS
and BEC systems are weakly interacting, the ufg is a
strongly interacting superfluid in which the critical tem-
perature and the Landau critical velocity attain their
highest values (in appropriate units). The velocity equa-
tion used in Ref. [12] to model shock waves in the colli-
sions of two ufg clouds neglects the “quantum pressure
term” and a phenomenological viscosity term is added:
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in which one can choose the mass of the atom m = 1, vk
and ∇k are the cartesian coordinates of v and ∇ respec-

tively, and [∇⊙ v]kl = ∇kvl +∇lvk − 2/3δkl∇ ·v. Above
µ[n] is the chemical potential in homogeneous matter at
a given number density n, and we have suppressed the
explicit dependence of the number density n(r, t), veloc-
ity v(r, t) and external trapping potential Vext(r, t) on
space-time coordinates. In the superfluid phase both the
shear viscosity and the “quantum pressure” terms are
proportional to ~ and a priori it is not obvious that one
can neglect one term, but not the other. Unlike the case
of dilute Bose gases, where the qsw were interpreted
as “pure” dispersive shock waves [3] with no need for
dissipative effects, the results of the experiment [12] on
ufg received an interpretation similar to classical shock
waves, in which dissipation plays a crucial role in the for-
mation of the shock wave front. These two distinct inter-
pretations of the experiments on Bose and Fermi dilute
gases are difficult to reconcile. In the bec regime, the role
of dissipation is negligible (at least at the phenomenolog-
ical level) and the qsw and the density ripples identified
with soliton trains can be described by dispersive effects
alone. Viscosity was introduced phenomenologically in
Ref. [12], to a large extent in order to avert the onset of a
“gradient catastrophe” [13]. At the same time, the ufg is
widely accepted as a prime example of an almost perfect
fluid [14]. In the ufg the bulk viscosity vanishes and the
shear viscosity is at a minimum as a function of the cou-
pling constant across the BEC-BCS crossover, see Refs.
[14–16] and references therein, and thus we see no com-
pelling theoretical arguments to include it in the present
study. In this respect, the present approach is similar to
other studies of dilute Fermi gases [17–21]. Another sig-
nificant limitation of the hydrodynamic approach, which
was used in Ref. [12], is its inability to describe quantum
topological excitations (quantized vortices, domain walls
(dw)), both of which have been observed in the similar
experiments with bosons [1–5].

In the case of colliding ufg clouds, we observe the
generation of both qsw and dw. The dw excitation has
been suggested in other simulations [17–20]. The dw are
excitations of the superfluid order parameter and not the
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number density ripples identified as soliton trains trailing
the wake of the shock waves, as discussed in Refs. [1–5].
We will make this distinction in order to avoid confusion.
We show that the number density of two colliding ufg

clouds shows a behavior very similar to the one observed
in experiment [12]. In the wake of the qsw we observe
in addition the formation of dw. The dw emerge as
quite sharp changes in the phase of the superfluid order
parameter by π, and are correlated with minima of the
number density. dw propagate through the system at
slower speeds than the qsw and are topological excita-
tions similar to quantum vortices. dw always appear in
pairs with opposite jumps of the order parameter phase
and appear to collide essentially elastically with one an-
other and with the system boundary. These phenomena
are observed in the absence of any dissipation, which is
expected to play a negligible role at temperatures close
to absolute zero, see Ref. [15, 16] and references therein.
The extension of the dft to superfluid fermionic sys-

tems and time-dependent phenomena has been described
and applied to a number of phenomena in nuclear physics
and the physics of cold gases [9–11]. This approach
is known as the Superfluid Local Density Approxima-
tion (slda) and tdslda for its time-dependent ver-
sion respectively, based on the simplest possible (un-
renormalized) energy density functional:
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v∗nun are the kinetic, number and anoma-
lous densities respectively, and Vext is an external one-
body potential. The dynamical evolution of the system is
described by Bogoliubov-de Gennes-like equations (bdg)
for the quasiparticle wave functions (qpwfs) (un, vn)
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where the single-particle Hamiltonian, h, and pairing po-
tentials, ∆, are obtained by taking the appropriate func-
tional derivatives of the energy density functional E . The
dimensionless constants α, β and γ are fixed by the en-
ergy per particle, pairing gap and quasiparticle spectrum
obtained from Quantum Monte Carlo (qmc) calculations
of the homogeneous infinite system. For the descrip-
tion of the renormalization procedure, various technical
details, and numerical implementation details see Refs.
[10, 11]. Within slda various properties of a ufg are re-
produced within a few percent accuracy, mainly limited
so far by the accuracy of the qmc values for the pairing
gap and for the effective mass [10]. Dimensional and sym-
metry arguments, renormalizability, and Galilean invari-
ance define tdslda uniquely and with an overall accu-
racy not worse than 10%. Unlike the bdg approximation,
in which interaction effects vanish in the absence of pair-
ing correlations, the energy of both superfluid and normal

phases at zero temperature are described accurately. The
ufg has a condensation energy ≈ 20% of the total inter-
action energy. In the bdg approximation, however, the
condensation energy is equal to the interaction energy in
the case of an ufg. Even at unitarity, the meanfield en-
ergy dominates the pairing energy, and that affects the
dynamics accordingly. An ufg initially in a superfluid
phase that is subjected to an external time-dependent
agent can become normal and the Cooper pairs could be
destroyed, but the particles will still be strongly inter-
acting. In contradistinction, in the bdg approximation,
which was used in studies of solitons [17–20], the normal
phase is simulated as a non-interacting Fermi gas [11].

FIG. 1. (Color online) The space-time evolution of the 1D
density profiles along the trap axis as reported in Fig. 2 of
Ref. [12]. We have outlined part of the shock wave front with
a white oval here and in Figs. 2, 4, 5, and 6.

We have performed simulations of the cold atom
cloud collisions assuming that qpwfs have the struc-
ture un(r, t) ⇒ exp(iknzz)un(x, y, t), vn(r, t) ⇒
exp(iknzz)vn(x, y, t) with periodic boundary conditions
in the z-direction and a rather stiff harmonic confining
potential in the y-direction. The time-dependent trap-
ping potential along the collision x-axis had a similar
profile and time dependence as in experiment [12]. The
solitons and the shock waves now are 2D in character,
their stability properties are slightly different than in 3D,
and the sound velocity is modified [22]. Typical results
of these simulations are shown in Figs. 2, 3, 4, 5, and
6. One can zoom into the online figures in order to see
details, which otherwise would escape the naked eye.
The simulation results, Fig. 2, show remarkable

similarities with the experiment, Fig. 1. The qsw

speed in experiment (vqsw/vF ≈ 0.35) and simulations
(vqsw/vF ≈ 0.25) agree within ≈ 25 − 30%. The dif-
ferences can be ascribed to various experimental un-
certainties (in particular the particle number), different
trap shapes (Vtrap(x, y, z) ∝ ω2

‖x
2 + ω2

⊥(y
2 + z2) and

Vtrap(x, y, z) ∝ ω2

‖x
2 + ω2

⊥y
2 in experiment and simula-
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FIG. 2. (Color online) The space-time evolution of the num-
ber density profile n(x, 0, t) along the collision axis in TD-
SLDA simulation of the collision of two ufg clouds. Here kF
and εF = k2

F/2 (~ = m = 1) are the initial values of the Fermi
wave vector and energy at the center of clouds. The region
where one elastic collision of two dw occurs is outlined with
a white circle here and in Figs. 4, 5, and 6.

FIG. 3. (Color online) Three consecutive frames showing the
absolute magnitude of the pairing field |∆(x, y, t)| in the xy-
plane at times tεF = 30, 350, 690, see also Figs. 2 and
4. The x- and y-directions (not shown to scale here) have an
aspect ratio of ≈ 30. By the time of the second frame the qsw

have emerged from the cloud. dw appear as planar number
density depletions with a width comparable to the diameter
of a quantum vortex, and can be highly visible using standard
techniques [23]. We have observed the formation of dw so far
only in traps with elongations larger than in experiment [12].
In simulations of clouds with smaller aspect ratios we observe
only qsw with density profiles very similar to Ref. [12].

tions respectively) and sizes, different cloud aspect ratios,
and also different amount of initial collisional kinetic en-
ergy injected into the system. In spite of being confined
in the y-direction in a harmonic potential, the dw are
planes perpendicular to the collision x-axis. However, in
Ref. [12] the experimental set-up prevented the authors
from observing the dw. The images corresponding to
various frames reported there were taken in different re-
alizations of the two colliding clouds. On one hand, the
phase differences of the two initially separated conden-
sates are likely random and maybe difficult to control, see
Ref. [24]. On the other hand, the density profile fluctua-
tions from shot-to-shot in Ref. [12] point to a rather low
spatial resolution attained in these measurements (see

FIG. 4. (Color online) The magnitude of the pairing gap
|∆(x, 0, t)| corresponding to Fig. 2. The dw appear as sig-
nificant depletions of the pairing field, and always appear in
pairs with opposite phase jumps, see also Figs. 5 and 6.

Fig. 2 in Ref. [12]), which explains why dw have not
been observed in this experiment. We have performed
simulations by varying the initial relative phase of the
condensates. While the overall picture of the collisions
remains unchanged, the number of dw created varies.
The density ripples in the wake of the shock waves dis-
cussed in experiments with Bose dilute clouds [1–5] and
interpreted there as a soliton train, are formed here as
well. By zooming in the online Figs. 2 and 4 one can
notice that before the shock wave is formed well defined
matter wave interference occurs. The discontinuity in
the number density and order parameter at the wake of
the shock wave is accompanied by a similar discontinu-
ity in the collective flow velocity, see Fig. 6. The dw

which form in the wake of the shock wave have lower
speeds. The width of the domain wall density depletion
is comparable with the diameter of the density depletion
of the quantized vortex core in a UFG [7, 8]. This aspect
might present a challenge if one were to attempt a direct
observation. However, the experimental technique imple-
mented to visualize the quantum vortex lattice in a UFG
[23] can be implemented to put in evidence dw, particu-
larly since a spatial imprint left by a single dw is a much
larger 2D-structure, as compared to the 1D imprint left
by vortex core, see Fig. 3. In sufficiently wide traps dw
might develop “snake” instabilities as in Ref. [1], which
would be a clear “smoking gun” of dw formation.

In summary, we have shown that qsw and dw are
formed in the collision of two initially independent super-
fluid fermionic clouds. The qsw manifest themselves as
rather sharp discontinuities in the number density, super-
fluid order parameter and collective flow velocity. They
reflect essentially elastically from system boundaries, but
with significant reduction in their intensity. The shock
waves lead to the formation of dw topological excitations
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FIG. 5. (Color online) The phase of the pairing gap
arg ∆(x, 0, t)/π.

FIG. 6. (Color online) The x-component of the collective
flow velocity field vx(x, 0, t) along the axis of collision. At the
front of the two shock waves the velocity field undergoes a
rapid change, and the matter flows in opposite directions.

of the superfluid order parameter similar to quantum vor-
tices. As in the case of vortices, dw show-up as signif-
icant depletions of the number density, but over much
wider spatial regions [7, 8, 23]. The phase of the super-
fluid order parameter changes quite abruptly by π across
a domain wall, and dw appear always in pairs propa-
gating in opposite directions. The dw reflect elastically
from the system boundaries. However, they eventually
dissipate, in particular when colliding with one another,
if they have the same phase jump. dw with similar phase
jumps can propagate at different speeds and when they
catch one another often annihilate. dw with opposite
phase jumps appear to collide elastically.
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