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A new mechanism is reported that increases electron energy gain from a laser beam of ultra-
relativistic intensity in underdense plasma. The increase occurs when the laser produces an ion
channel that confines accelerated electrons. The frequency of electron oscillations across the channel
is strongly modulated by the laser beam, which causes parametric amplification of the oscillations
and enhances the electron energy gain. This mechanism has a threshold determined by a product
of beam intensity and ion density.

PACS numbers:

Low-density plasmas have a notable ability to gener-
ate relativistic energetic electrons when irradiated by a
high-intensity laser beam. This feature has been demon-
strated experimentally and it can be utilized or be ben-
eficial in a range of applications, including x-ray pro-
duction [1], positron generation [2, 3], and ion acceler-
ation [4]. The underlying electron acceleration mecha-
nism depends significantly on laser pulse duration. For
example, a laser-produced wakefield plays the dominant
role when the beam is relatively short, with the dura-
tion shorter or comparable to the plasma wave period [5].
However, the wakefield mechanism becomes less efficient
for longer laser pulses [6, 7]. Our interest in such pulses
is motivated by experiments with solid-density targets on
fast proton generation with 1-5 ps pulse duration [8]. A
prepulse in these experiments can create a transparent
preplasma, extending many wavelengths from the tar-
get surface along the beam path. The main pulse then
interacts with a low-density plasma before reaching the
target. It is important to understand if such interactions
can generate hot electrons in addition to the ones pro-
duced at the critical surface [9].

In the case of a long laser beam, its ponderomotive
pressure tends to expel plasma electrons from the beam
in the transverse direction. The plasma mitigates this
expulsion by generating a counteracting electric field via
charge separation. As a result, the laser can create a
positively charged channel with a quasi-static transverse
electric field evolving on an ion time scale. An elec-
tron accelerated by the laser can become confined in
this channel, oscillating across the channel while mov-
ing along with the laser beam. Considerable acceleration
of electrons has been observed experimentally in such
channels [1, 2, 7, 10–13]. Although the plasma in these
experiments was significantly underdense, the measured
electron energies were much greater than the energy ex-
pected in a vacuum for a laser beam of the same intensity.

Direct Laser Acceleration or DLA is the common term
for this phenomenon. The DLA effect has been demon-
strated in particle-in-cell simulations, with Ref. [14] being
one of the first to report it. The prevailing explanation

of the DLA mechanism is that “An energetic electron
experiences transverse betatron oscillations in the static
fields. These oscillations are along the polarization of the
laser pulse electric field, and thus an efficient energy ex-
change is possible when the betatron frequency is close to
the laser frequency, as witnessed by the relativistic elec-
tron” [14]. This explanation implies that the laser field
acts as a driving force for betatron oscillations, which re-
quires proper polarization of the laser beam. However,
a strong laser field can also affect betatron oscillations
via nonlinear modulations of their frequency, enabling
parametric amplification of the oscillations. The para-
metric amplification is relevant to the problem and it is
qualitatively different from the effect of the driving force.
Nevertheless, it has so far been overlooked, and the goal
of this letter is to fill the existing gap and describe the
role of this mechanism.

We examine electron oscillations across the channel for
an arbitrary polarization of the laser beam. We show
that the oscillations become unstable regardless of the
beam polarization and that the resulting amplification
of the oscillations enhances electron acceleration in the
direction of the laser beam. We find that the instabil-
ity threshold at ultra-relativistic intensities is determined
by the product of beam intensity and ion density. Con-
sequently, the plasma density threshold decreases with
laser intensity and the instability can develop even in a
very underdense plasma.

In order to illustrate the mechanism responsible for the
enhancement of electron acceleration, we consider the be-
havior of a single electron placed in a straight uniform ion
channel and irradiated by a plane electro-magnetic wave.
The ions are assumed to be immobile. We choose a two-
dimensional spatial setup (y; z), with the y-axis directed
across the channel and the z-axis directed along the chan-
nel axis. The plane wave propagates in the positive di-
rection along the z-axis. The electric and magnetic fields
(E and B) acting on the electron are thus given and the
problem reduces to the analysis of the electron equations
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of motion,

dr

dt
=
c

γ
P, (1)

dP

dt
= −|e|E

mec
− |e|
γmec

P×B, (2)

where r is the electron position, t is the time in the labo-
ratory (ion) frame of reference, e and me are the electron
charge and mass, c is the speed of light, P is the di-
mensionless electron momentum normalized to mec, and
γ =

√
1 + P 2 is the relativistic factor.

The electric field, E = Eion + Ewave, is a sum of a
static field of the ion space-charge, Eion, and an oscillat-
ing field of the wave, Ewave. The static component in
the uniform channel is Eion = eyω

2

p0mey/|e|, where ey

is a unit vector, ωp0 ≡
√

4πn0e2/me is the plasma fre-
quency, and n0 is the density of the singly charged ions in
the channel. The magnetic field, B = Bwave, is only due
to the wave. It is convenient to express the wave field in
terms of a dimensionless vector potential a:

Ewave = −mec

|e|
∂a

∂t
, Bwave =

mec
2

|e| ∇ × a. (3)

The vector potential a depends on t and z only via a
phase variable

ξ ≡ (ct− z) /λ, (4)

where λ is the laser wavelength. We choose a =
a(ξ) [ex cos θ + ey sin θ], where ex and ey are unit vec-
tors, θ is a polarization angle, and a(ξ) is a sinusoidal
function with a slowly varying envelope. To be specific,
we use the following expression for a(ξ) in our subse-
quent numerical calculations: a(ξ) = 0 for ξ ≤ 0, a(ξ) =
0.5 [1− cos (πλξ/cT )] a0 sin(2πξ + ψ) for 0 < ξ < cT/λ,
and a(ξ) = a0 sin(2πξ+ψ) for ξ ≥ cT/λ, where a0 is the
maximum amplitude, ψ is an initial phase, and T ≫ λ/c
is the pulse rise time.

The equations of motion simplify when dimensionless
proper time τ (proper time normalized to λ/c) is used
instead of t. The relation between the two is

dt/dτ = γλ/c. (5)

We also introduce the dimensionless displacement u
across the ion channel and a dimensionless parameter K,
which is a ratio of the wavelength to the electron skin-
depth:

u ≡ ωp0y/c, K ≡ ωp0λ/c. (6)

Note that K ≪ 2π in a significantly underdense plasma,
which is the case of our primary interest here. Substitut-
ing the expressions for E and B into Eq. (2), we obtain

FIG. 1: Parametrically unstable oscillations in the s-polarized
wave for κ = 12, with a0 = 10, K = 1.2 and T = 10λ/c. The
initial conditions are u(0) = 0.01, Py(0) = 0, and Pz(0) = 0.
The dashed (lower) curve in the upper panel shows a/a0 as a
function of the axial distance traveled by the electron.

the following closed set of equations:

d

dτ
[Py − a sin θ] = −γKu, (7)

dPz

dτ
=

[

a cos2 θ + Py sin θ
] da

dξ
, (8)

dξ

dτ
= γ − Pz, (9)

du

dτ
= KPy, (10)

where γ ≡
√

1 + P 2
y + P 2

z + a2 cos2 θ. Equation (9) is a

derivative of Eq. (4) with respect to τ , with Eq. (5) taken
into account. It follows from Eqs. (7) - (10) that there is
an integral of motion for the electron:

γ − Pz + u2/2 = C, (11)

where C is a constant determined by initial conditions.
This integral of motion sets an upper limit for the ampli-
tude of electron oscillations across the ion channel, which
is umax =

√

2 + u(0)2 for an electron that is initially at
rest (C = 1). The amplitude approaches umax at very
large values of Pz when γ − Pz → 0.
Equations (7) - (10) reproduce a well-known result

that, in the absence of ions, the maximum γ-factor for
an electron that is initially at rest is

γvac = 1 + a2
0
/2. (12)

The electron moves axially slower than the wave and is
therefore subject to dephasing, which limits electron en-
ergy gain from the wave. In the absence of ions, the
dimensionless dephasing rate, γ − Pz, is constant and
equal to unity. The ion channel can reduce this dephas-
ing rate significantly by means of electron oscillations in
the static field across the channel. Indeed, consider an
electron that is initially at rest, but slightly displaced
from the axis of the channel. The constant C in Eq. (11)
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FIG. 2: Maximum γ-factor for θ = 0 averaged over the ini-
tial wave phase. The vertical dashed line is the instability
threshold κ = κ∗(θ = 0). The dotted line, κ = 2πa0, is the
boundary where the wave frequency is equal to ωp0. The ini-
tial conditions are u(0) = 0.01, Py(0) = 0, and Pz(0) = 0.
The inset shows the threshold of the parametric instability
κ∗ as a function of the polarization angle θ.

is then very close to unity, so that the dephasing rate is
γ − Pz ≈ 1 − u2/2. If the amplitude of the oscillations
across the channel grows and approaches umax ≈

√
2, the

dephasing rate becomes very small. This should allow
the electron to stay in phase with the wave for a longer
time and thereby gain more energy, with the resulting
γ-factor exceeding γvac. The objective then is to find
an amplification mechanism for the oscillations, as that
would enable generation of electrons with γ > γvac.
In order to describe the electron motion across the

channel, we combine Eqs. (7), (9), and (10) and use Eq.
(11) in place of Eq. (8), which yields

u′′ − uu′u′

2 (C − u2/2)
+

K2u

2(C − u2/2)3
+

K2u

2 (C − u2/2)

+
K2a2 cos2 θu

2(C − u2/2)3
=

sin θ

C − u2/2
Ka′, (13)

where the prime denotes d/dξ. This equation generalizes
Eq. (11) of Ref. [14] to the case of arbitrary polariza-
tion. The two equations are identical when θ = π/2,
except for notations. We use phase ξ rather than time
t as an independent variable, which helps to distinguish
between resonant excitation of oscillations by an external
force (betatron resonance) and parametric amplification
of oscillations.
For small displacements, Eq. (13) reduces to a linear

equation for a driven oscillator with a modulated eigen-
frequency, u′′ +K2(1 + cos2 θa2/2)u = sin θKa′. In the
case of a non-relativistic wave (a0 ≪ 1), the oscillations
across the channel are stable in an underdense plasma
(K ≪ 1). The reason is that the eigenfrequency, which
is close to K for a0 ≪ 1, is significantly lower than the
frequency of the modulations and the frequency of the

driving force. However, the conditions for instability be-
come much more favorable at ultra-relativistic intensities.
In the limit of low densities (K ≪ 1) and ultra-

relativistic intensities (a0 ≫ 1), the K2-terms that do
not involve a2 can be neglected in Eq. (13). We also set
a(ξ) = a0 sin(2πξ + ψ), implying that ξ > cT/λ, which
simplifies Eq. (13) to an equation,

u′′ − uu′u′

2 (C − u2/2)
+
κ2 cos2 θ sin2(2πξ + ψ)

2(C − u2/2)3
u

=
2πκ sin θ

C − u2/2
cos(2πξ + ψ), (14)

that depends only on a single parameter

κ ≡ a0K = ωp0a0λ/c. (15)

In what follows, we set C = 1 in Eq. (14), which implies
that Pz(0) = 0. The results for C = 1 can be rescaled to
the case of an arbitrary C by replacing u with C−1/2u
and κ with C−3/2κ. This rescaling generalizes the results
to the case of an arbitrary initial Pz via Eq. (11).
The case of small polarization angles offers further sim-

plifications, because the driving term on the right hand
side of Eq. (14) is small. It is instructive to consider a
linearized version of Eq. (14),

u′′ +
1

2
κ2 sin2(2πξ + ψ)u = 2πθκ cos(2πξ + ψ). (16)

In contrast to the non-relativistic case, the eigenfre-
quency is now strongly modulated and, as a result, its
maximum value increases with a0 for a given ion density
(fixed K). Solutions of Eq. (16) are stable for κ≪ 1, but
they become unstable when κ is increased. The instabil-
ity is caused by eigenfrequency modulations because it
develops even at θ = 0 when there is no driving force.
We shall therefore use the term parametric to refer to
this instability, with the changing parameter being the
eigenfrequency. At θ = 0, Eq. (16) becomes a Math-
ieu differential equation that has exponentially growing
solutions when κ exceeds a certain threshold value κ∗.
We find that κ∗ ≈ 10.2. The nonlinearity retained in
Eq. (14) plays a destabilizing role and it formally allows
the amplitude to reach umax, causing unlimited energy
gain. This observation suggests that the energy gain in
low-density plasma depends on K as well as on κ and
that it needs to be determined from Eqs. (7) - (10).
The solution of Eqs. (7) - (10) for κ = 12 is shown in

Fig. 1. The instability that develops in this case (κ > κ∗)
causes the oscillations to grow significantly. The increase
in their amplitude leads to increased axial acceleration,
such that the maximum γ-factor (γmax) is greater than
the maximum value achieved in the absence of ions [γvac
of Eq. (12)]. Figure 2 shows γmax as a function of a0 and
κ. At a0 > 10, the stability boundary is indeed deter-
mined only by κ since the threshold coincides with the



4

FIG. 3: Parametrically unstable oscillations in the p-polarized
wave for κ = 5, with a0 = 10, K = 0.5 and T = 10λ/c. The
initial conditions are u(0) = 0.0, Py(0) = 0, and Pz(0) = 0.
The dashed (lower) curve in the upper panel shows a/a0 as a
function of the axial distance traveled by the electron.

dashed vertical line κ = κ∗. In Figure 2, γmax/γvac is av-
eraged over the initial phase ψ. The value of γmax/γvac
for specific ψ and T can deviate from the average value
by order unity above the instability threshold, although
γmax/γvac does not exhibit any sharp dependence on ei-
ther ψ or T .

It is essential that electron oscillations across the ion
channel become unstable for all polarization angles rather
than just for θ ≪ 1. The θ-dependence of the instability
threshold κ∗(θ) is shown in the inset of Fig. 2. The ampli-
tude of the oscillations is small below the threshold only
for θ ≪ 1. In general, this is not the case and the oscil-
lations are nonlinear even below the threshold. In order
to identify the cause of the instability in this regime, we
linearize Eq. (14) for small deviations δu from the stable
solution just below the threshold. The eigenfrequency is
again strongly modulated. We deliberately neglect the
force term in the linearized equation and we find that
a slight variation of coefficients in the linearized equa-
tion (the coefficients are determined by the stable unper-
turbed solution) leads to exponential growth of δu. Such
behavior is a signature of a parametric instability and
it clearly distinguishes the parametric instability caused
by modulations of the eigenfrequency from a resonance
with the driving force. Figure 3 shows the unstable oscil-
lations and the resulting maximum value of γ for θ = π/2
and κ = 5 > κ∗(π/2). The maximum value of γ is al-
most 8 times greater than γvac in this strongly nonlinear
regime.

In summary, we have shown how parametric ampli-
fication of electron oscillations in the ion channel can
enhance electron energy gain from a laser beam of ultra-
relativistic intensity. The effect results from instability
caused by a strong modulation of the electron oscillation
frequency by the laser field. The origin of the modula-
tion is the oscillations of the relativistic γ-factor caused
by ultra-relativistic electron motion in the electromag-
netic field of the wave. The instability develops when

the laser intensity I exceeds a threshold value

I
[

W/cm2
]

λ2[µm] = 1.37× 1018 (κ∗/2π)
2
nc/n0, (17)

where nc is the critical density, n0 is the ion density, and
κ∗ is the threshold parameter determined by the laser
polarization (see the inset of Fig. 2). Our single particle
model can also be applicable if the channel contains an
underdense electron population in addition to the accel-
erated electron beam. Our analysis is not very restrictive
with regard to the beam density because mutual repul-
sion of ultra-relativistic electrons can be much weaker
than the focusing force from the ions even at substantial
electron densities [15]. The effect of the electrons on the
wave is negligible at sufficiently low electron densities.
A self-consistent nonlinear calculation of the electron re-
sponse to the laser field is needed to quantify the upper
limit on electron density, since the electron motion in the
channel is ultrarelativistic.
The presented mechanism could be employed in laser-

target experiments to generate hot electrons, provided
that appropriate applicability conditions are satisfied.
The thickness of the preplasma layer needs to be compa-
rable to the interaction length required for the enhanced
acceleration, l ≈ γmaxλ. The width of the laser beam
must exceed

√
a0c/ωp0 to ensure that ultra-relativistic

electrons with γ ≥ a0 are not expelled by the trans-
verse gradient of the ponderomotive pressure. This con-
dition also guarantees that the electron remains within
the beam during its transverse oscillations. It is also
plausible that this mechanism is involved in formation
of energetic electron tails observed in Ref. [2, 7, 10, 12],
because the laser intensity in the experiments was in the
range of the threshold intensities defined by Eq. (17).
A realistic modeling of the experiment is required for a
more conclusive assessment. Finally, the amplification
of electron oscillations via the presented mechanism may
also be beneficial in those applications that employ trans-
verse electron oscillations in a confining quasi-static field
to generate x- and gamma-rays [12, 16], provided that the
mechanism is robust with respect to spectral broadening
of the laser beam [17].
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