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High dimensional Hilbert spaces used for quantum communication channels offer the possibility of
large data transmission capabilities. We propose a method of characterizing the channel capacity of
an entangled photonic state in high dimensional position and momentum bases. We use this method
to measure the channel capacity of a parametric downconversion state by measuring in up to 576
dimensions per detector. We achieve a channel capacity over 7 bits/photon in either the position or
momentum basis. Furthermore, we provide a correspondingly high dimensional separability bound
that suggests that the channel performance cannot be replicated classically.

PACS numbers: 42.50.Dv, 03.67.Bg, 03.67.Hk

Typical examples of quantum entanglement involve
two-dimensional bipartite systems [1, 2], however quan-
tum systems can exhibit more complex forms of entangle-
ment, and attention has recently been turned to study-
ing these rich forms of entanglement. This includes re-
search on entanglement in multiple degrees of freedom
(known as “hyper-entanglement”) [3, 4], as well as high-
dimensional systems entangled in a single degree of free-
dom. These degrees of freedom include: time and energy,
and transverse position and momentum (including angu-
lar momentum) [5–10]. Both of these types of entangle-
ment can present advantages for practical applications.
Indeed, for communication purposes—such as quantum
key distribution [11] or dense coding [12]—higher dimen-
sional states increase quantum channel capacity and offer
additional benefits such as increased security [13, 14].

The photonic transverse-position degree of freedom is a
good candidate for practical high-dimensional entangled
systems due to the wide availability of technology for ma-
nipulating this degree of freedom. As a result there has
been significant theoretical and experimental effort to in-
crease and characterize the channel capacity of entangled
photons in this transverse domain. Pors et al. demon-
strated a measurement-limited Shannon dimensionality
(the effective number of measurable modes, see [15]) of
D ≈ 6 using angular phase plates for a system with a
Schmidt number of K ≈ 31 [16]. Dada et al. demon-
strated a violation of an 11-dimensional Bell inequality
using spatial light modulators as mode sorters for orbital
angular momentum states [17].

These examples show how previous characterization
schemes rely on reconstructing continuous transforma-
tion properties of the state, which are in general deter-
mined either by direct measurement or by reconstruct-
ing the density matrix. The reconstruction is then used
to calculate the corresponding channel capacity. These
methods, however, are difficult to scale to arbitrary di-
mensions; either the analyzer fabrication requirements
exceed the state of the art (e.g. Pors et al. anticipated
a future Shannon dimensionality realization of D ≈ 50),
the crosstalk between mode decompositions becomes too
large, or the calculations involve very demanding maxi-

mization procedures.

Here we propose a direct way of characterizing the
communication capabilities of a high dimensional quan-
tum system—entangled in the photonic transverse po-
sition degree of freedom—that offers several advantages
over other methods. This method does not have the in-
termediate step of determining the transformation prop-
erties of the state, but rather uses knowledge of mutu-
ally unbiased bases for our quantum system (the posi-
tion basis and the momentum basis). This allows us to
characterize the system by only measuring in these two
bases, drastically reducing the number of required mea-
surements and, in the process, bypassing many of the
scaling problems of previous methods. Additionally, this
method has the practical benefit of using the communica-
tion apparatus itself for the characterization, thus simpli-
fying system requirements and more directly linking the
characterization to the system’s ultimate communication
capabilities.

We demonstrate the utility of this method on a para-
metric down-conversion state with a Schmidt number in
excess of 1000. Employing classical definitions of mutual
information for joint photon-detections, and measuring
in up to 576 dimensions per detector, we show that the
system achieved a channel capacity of over 7 bits per
joint photon detection event, roughly equivalent to a di-
mensionality of 128. We show that this high-dimensional
entangled system relies upon quantum correlations by
violating the correspondingly high-dimensional classical
separability bound. We also show that for Gaussian cor-
related states in the low-noise limit and as the number of
detectors becomes large, the mutual information charac-
terization asymptotically approaches the Schmidt num-
ber of the entangled bipartite state.

We characterize our channel using the concept of mu-
tual information, which describes how much information
can be determined about a random variable A, by know-
ing the value of a correlated random variable B [18, 19].
Variables A and B are characterized by the values they
take a and b, respectively, and the probability of these
values p(a) and p(b), respectively. The mutual informa-
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FIG. 1: (color online) Experimental Setup. A collimated laser
beam undergoes spontaneous parametric down-conversion at
a nonlinear crystal. The output passes a focusing lens followed
by a beam-splitter. The outputs from the beam-splitter are
sent to digital micro-mirror devices at either image planes
or Fourier planes of the crystal. The micro-mirror devices
are set to retro-reflect the beams, a quarter wave plate and
a polarizing beam-splitter send the retro-reflected beam to a
single-photon detector. A coincidence circuit correlates these
measurements.

tion can be written as

I(A;B) = H(A) +H(B)−H(A,B), (1)

where, for example

H(A) = −
∑

a∈A

p(a) log p(a) (2)

is the marginal entropy of A, and

H(A,B) = −
∑

a∈A
b∈B

p(a, b) log p(a, b) (3)

is the joint entropy of A and B. The function p(a, b) is
the joint probability distribution that characterizes the
correlation between A and B.

We created a position-momentum entangled state
using spontaneous parametric-downconversion (SPDC).
The state, represented both in position and in momen-
tum, is approximated as [20]

|ψ〉 =
∫

d~xad~xb f(~xa, ~xb) â
†
aâ

†
b |0〉

=

∫

d~kad~kb f̃(~ka, ~kb) â
†
aâ

†
b |0〉

(4)

where â† is the photon creation operator. Subscript a
indicates the photon is created in the signal mode and
subscript b indicates the photon is created in the idler
mode, which are then sent to Alice or Bob, respectively.

The function

f(~xa, ~xb) = N exp

(−(~xa − ~xb)
2

4σ2
c

)

exp

(−(~xa + ~xb)
2

16σ2
p

)

(5)
is the approximated entangled biphoton wavefunction in
the position basis, and

f̃(~ka, ~kb) = (4σpσc)
2N exp(−σ2

c (
~ka − ~kb)

2)

× exp(−4σ2

p(
~ka + ~kb)

2)
(6)

is the approximated biphoton wavefunction in the mo-
mentum basis. In these equations σp is the Gaussian
width in the ~xa + ~xb direction and controls the single
photon width: σc is the Gaussian width in the ~xa − ~xb
direction and controls the two photon correlation width.
N = (2πσpσc)

−1 is a normalization constant.
To measure position correlations we put spatially-

resolving single-photon detectors at image planes of the
SPDC source: to measure momentum correlations we put
the detectors at Fourier transform planes of the source.
For our purposes then, random variable A corresponds
either to the position or momentum of Alice’s photon
and B corresponds either to the position or momentum
of Bob’s photon.
The theoretical maximum mutual information for the

wavefunction in equation 5 (measuring in the position
basis) is:

I(A;B) = −
∫

p(~xa, ~xb) log

(

p(~xa, ~xb)

p(~xa)p(~xb)

)

d~xad~xb (7)

where p(~xa, ~xi) = |f(~xa, ~xb)|2 and p(~xa) =
∫

|f(~xa, ~xb)|2d~xb. For the momentum basis, the same
relations hold, but the position variables are replaced by
the momentum variables and the position wavefunction
is replaced by the momentum wavefunction of equation
6.
For either basis, this theoretical maximum simplifies

to

I(A;B) = log

(

4σ2

p + σ2

c

4 σcσp

)2

, (8)

which is independent of detector characteristics. In the
limit of strong correlations (σp/σc) ≫ 1, the mutual in-

formation reduces to I(A;B) = log (σp/σc)
2
. The ra-

tio σp/σc is the familiar Fedorov ratio for quantifying
entanglement—which is identical to the Schmidt number
for Gaussian entangled states [21]. Our physical SPDC
state had a beam envelope width of σp = 1500 µm and a
correlation width of approximately σc = 40 µm, result-
ing in an optimum mutual information from equation 8
of I ∼= 10 bits/photon.
It should be noted that although we use pure quantum

states, mutual information characterization can be ap-
plied to more general states including mixed states or bi-
partite multiparticle systems. For these situations, equa-
tion 7 would be valid but the probability distributions
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would be calculated in a different manner. Additionally,
although we may be sacrificing some intuitive advantages
by using an entropic measure rather than dimensionality,
we do gain a more direct link to information theory.
The measurement apparatus consisted of a digital mi-

cromirror device (DMD) chip reflecting a portion of the
signal or idler beam onto a single photon counting mod-
ule. The DMD chip allowed us to raster scan over the
face of the beam in a controllable number of detection
pixels, giving varying detector resolution. To incorporate
the effects of the measurement apparatus, we integrate
the probability density over the pixel area. For example,
for position correlations between the mth pixel on Alice’s
detector, and the nth pixel on Bob’s detector, the joint
detection probability is:

p(m,n) =

∫

m

d~xa

∫

n

d~xb |f(~xa, ~xb)|2. (9)

The detected mutual information in either position or
momentum is

I(A;B) =−
∑

m

p(m) log p(m)−
∑

n

p(n) log p(n)

+
∑

m,n

p(m,n) log p(m,n),
(10)

where, for example,

p(m) =
∑

n

p(m,n) (11)

is the marginal probability for a pixel on Alice’s detector.
With ideal alignment, a given pixel on Alice’s detector

will strongly correlate to only one pixel on Bob’s detec-
tor. In practice however, a relative lateral shift of pix-
els between Alice’s and Bob’s detectors—both vertically
and horizontally—spreads correlations to four pixels at
best. However, pixels far from the correlated pixel will
still have no correlation. This was verified experimentally
and it allowed us, for a given pixel on Alice’s detector,
to scan only in a region of interest around the correlated
pixel on Bob’s detector, thus reducing the time required
to complete a double raster scan.
Joint photon detection rates for the various raster scan

measurements were between 1 and 100 per second (be-
tween correlated pixels). Integration time for raster scans
was increased as the count rates decreased, with the
longest time being 5 seconds per pixel pair. Multiple
scans were performed for each detector resolution.
Both the predicted and experimentally measured val-

ues for mutual information are shown in figure 2. Mutual
information values for both position correlation measure-
ments and momentum correlation measurements are pre-
sented. For an accurate characterization, only the joint
photon detection events are used to determine the mutual
information. Single detection events without the corre-
sponding detection in the other arm are ignored even for

the calculation of the marginal probabilities of equation
11. Uncertainties in the number of detected photons N
at each point in the double raster scan were assumed to
be

√
N . This was used to find the uncertainties of the

measured mutual information values, which agree with
the statistics found by taking multiple data scans for a
given detector resolution. It should be noted that this
uncertainty calculation method does not take into ac-
count detector dark counts. Since the dark counts from
each detector are uncorrelated, the dark coincident rate
is much less than the coincident rate from the highly cor-
related SPDC state.

Light blue bars represent predicted mutual informa-
tion values from numerical calculations of equation 10.
The top of each bar corresponds to perfect lateral pixel
alignment between Alice and Bob, and the bottom cor-
responds to relative lateral shifts, both horizontally and
vertically, of half a pixel. These cases represent the max-
imum and minimum mutual information possible for a
given number of detector pixels. The dark blue circles
represent experimentally measured channel capacities.
The red curve gives the maximum mutual information
that can be detected I = log(n × n) for n × n pixels
per detector (independent of state). The experimental
data agrees with the theoretically predicted values, stay-
ing within the predicted range for all data sets.

For momentum correlations a maximum mutual infor-
mation of 7.2 ± 0.3 bits/photon was achieved; for posi-
tion correlations only 7.1±0.7 bits/photon were achieved.
In principle, the two measurement bases should give the
same mutual information. However, the alignment for
position correlations was more sensitive—the reduction
of mutual information for this basis most likely resulted
from slight system misalignments.

The 576 dimensional measurement space is 16
times larger than the previous maximum for position-
momentum entangled photons, and over 50 times larger
than recent realizations using the photonic orbital angu-
lar momentum degree of freedom [17]. It should be noted
that channel capacity characterization is different from
using the channel for communication. When used for key
distribution or communication, the characterized chan-
nel will indeed transmit 7 bits of information for a single
joint detection event, despite the fact that characteri-
zation methods requires many photon detection events.
The use of this channel for key distribution or communi-
cation does, however, require some additional structure
[11, 12], and we are further investigating the ultimate ex-
perimental realization of these structures. It should be
noted, however, that although we only detect photons
from one pixel at a time, photons from the other pix-
els are not necessarily lost—rather, they are reflected to
a different (but known) location that could in principle
be monitored. This could be important in requirements
for quantum information protocols, for example in the
detection of eavesdropping.
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FIG. 2: (color online) Mutual Information Data. Mutual information for position correlation measurements and momentum
correlation measurements are shown as a function of detector resolution. Data for detector resolutions of 8× 8 pixels, 16× 16
pixels, and 24 × 24 pixels are shown. The dark blue points with error bars are experimental data. The light blue bars are
numerical simulations based on equation 10 both for the case of perfectly relative transversely aligned detectors and the case
of a relative transverse misalignment of half a pixel. The red curve is the maximum mutual information that can be detected
for the number pixels per detector.

Recent work suggests that this data can be used to test
for non-classical behavior of the communication channel.
A separable quantum state in two spatial dimensions sat-
isfies the inequality h(A|B)P + h(A|B)M ≥ 2 log

2
(πe),

where, for example, h(A) is the continuous (or differ-
ential) entropy of A, h(A|B) = h(A,B) − h(B) is the
conditional continuous entropy of A given B, and sub-
scripts P or M indicate measurements in the position or
momentum bases respectively [19, 22]. Although the in-
equality is derived using continuous entropies, Walborn
et al. have made use of it with discrete entropies by ap-
proximating the relationship between the two entropies
[23]. We make use of a modified inequality where the
continuous entropy is replaced with the discrete entropy:

H(A|B)P +H(A|B)M ≥ 2 log
2
(πe) ≈ 6.19. (12)

It should be noted that we have not yet derived a proof
of this form of the inequality and we are currently re-
searching its full range of applicability.
From the 24× 24 pixel scan data, we calculate

H(A|B)P +H(A|B)M = 2.2± 0.7 (13)

H(B|A)P +H(B|A)M = 2.2± 0.6. (14)

The separability bound of equation 12 is violated by more
than 5 standard deviations, suggesting that the channel
performance cannot be replicated classically.
In this letter we have proposed and demonstrated a

method of characterizing the quantum mutual informa-
tion based channel capacity of a high dimensional quan-
tum communication channel using position and momen-
tum entangled photons and a controllable pixel mirror.

We measured up to 576 dimensions per detector, in both
the position and the momentum basis, which resulted in
a measured channel capacity of more than 7 bits/photon
for either basis. The channel violated an entropic separa-
bility bound, strongly suggesting the performance cannot
be replicated classically.
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