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We show that the pseudo-relativistic physics of graphene near the Fermi level can be extended to
three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological
to normal insulators, we show that particular space-groups also allow 3D Dirac points as symmetry
protected degeneracies. We provide criteria necessary to identify these groups and, as an example,
present ab initio calculations of β-cristobalite BiO2 which exhibits three Dirac points at the Fermi
level. We find that β-cristobalite BiO2 is metastable, so it can be physically realized as a 3D analog
to graphene.

In a Dirac semimetal, the conduction and valence6

bands contact only at discrete (Dirac) points in the Bril-7

louin zone (BZ) and disperse linearly in all directions8

around these critical points. In two dimensions, spinless9

graphene exhibits such point-like degeneracies between10

the conduction and valence bands: the low energy effec-11

tive theory at each of the critical points takes the Dirac12

form, Ĥ(k) = v(kxσx + kyσy) where ~σ = {σx, σy, σz}13

are the Pauli matrices and v 6= 0 [1]. The existence of14

Dirac points near the Fermi level is responsible for many15

important properties of graphene such as high electron16

mobility and conductivity. However these Dirac points17

are not robust because they can be gapped by a pertur-18

bation proportional to σz . Spin-orbit coupling doubles19

the number of states and gaps the Dirac points [2]; how-20

ever the splitting is very small because carbon is a light21

atom.22

In 3D, the analogous (and slightly generalized) Hamil-23

tonian is Ĥ(k) = vijkiσj . Provided det[vij ] 6= 0, Ĥ(k)24

is robust against perturbations because it uses all three25

Pauli matrices. This Hamiltonian is called a Weyl Hamil-26

tonian because it describes two linearly dispersing bands27

that are degenerate at a (Weyl) point. The robustness28

of a Weyl point can be quantified by the Chern number29

of the valence band on a sphere surrounding the point,30

which takes values sgn(det[vij ]) = ±1. If a Weyl point31

occurs at some BZ momentum k, time reversal (T) sym-32

metry requires that another Weyl point occur at −k with33

equal Chern number. However, the total Chern num-34

ber associated with the entire Fermi surface must vanish.35

Hence there must exist two more Weyl points of opposite36

Chern number at k′ and −k′. Inversion (I) symmetry re-37

quires that Weyl points at k and −k have opposite Chern38

number. Hence under both T and I symmetries, k = k′
39

and the effective Hamiltonian involves four linearly dis-40

persing bands around k. Such a Hamiltonian is called a41

Dirac Hamiltonian, and it is not robust against pertur-42

bations because there are additional 4×4 Dirac matrices43

that can be used to open a gap at the Dirac point.44

The Fermi surface of a Dirac semimetal consists en-45

tirely of such point-like (Dirac) degeneracies. 3D Dirac46

semimetals are predicted to exist at the phase transi-47

tion between a topological and a normal insulator when48

I-symmetry is preserved [3, 4] (Ref. [5] demonstrates49

such a Dirac point degenerate with massive bands.) If50

either I or T-symmetry is broken at the transition, a51

Dirac point separates into Weyl points and one ob-52

tains a Weyl semimetal (Fig. 1(c)). The topological na-53

ture of Weyl points gives rise to interesting properties54

such as Fermi-arc surface states [6] and pressure induced55

anomalous Hall effect [7]. Recent proposals to design56

a Weyl semimetal have been predicated upon the exis-57

tence of a parent Dirac semimetal which splits into aWeyl58

semimetal by breaking I [8] or T-symmetry [9]. Ref. [10]59

demonstrates the existence of bulk chiral fermions due to60

crystal symmetry in single space-groups.61

Dirac points that arise in a topological phase transition62

described above are accidental degeneracies. In general,63

two Weyl points with opposite Chern numbers annihi-64

late each other unless their degeneracy is protected by65

additional space-group symmetry. Therefore we ask if a66

Dirac point can arise as a result of a crystallographic sym-67

metry. Indeed certain double space-groups allow Dirac68

points at high symmetry points on the boundary of the69

BZ. As an example we present ab initio calculations of β-70

cristobalite BiO2 (Fig. 2(b)) which exhibits Dirac points71

at three symmetry related X points on the boundary of72

the FCC BZ (Figs. 1(b) and 3(c)). This system realizes73

a Dirac degeneracy first encountered in a tight-binding74

model of s-states in diamond in Ref. [11] (the Fu-Kane-75

Mele model). In the absence of T-symmetry, two Weyl76

points with equal Chern numbers can be degenerate due77

to a point group symmetry as shown in Ref. [12].7879

A 3D double space-group must satisfy the following80

criteria to allow a Dirac point. It must admit four di-81

mensional irreducible representations (FDIRs) at some82

point k in the BZ such that the four bands degenerate83

at k disperse linearly in all directions around k and the84

two valence bands carry zero total Chern number. If85

the little group Gk at k contains a three-fold or a six-86

fold rotation symmetry and the valence and conduction87

bands around k are non-degenerate, the Chern number88

of the FDIR is guaranteed to be non-zero. This rules out89

symmorphic space-groups with FDIRs because they con-90
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FIG. 1. 3D Dirac semimetal in β-cristobalite BiO2. (a) Bril-
louin zone (BZ) of the FCC lattice. The plane highlighted
in gray joins the three symmetry related X points. Other
high symmetry points are also indicated. (b) Conduction and
valence bands of β-cristobalite BiO2 are plotted as functions
of momentum on the plane highlighted in gray on the left.
Each band is two-fold degenerate due to inversion symme-
try. Dirac points appear at the center of the three zone faces
of the BZ. (c) Dirac, Weyl and insulating phases in the dia-
mond lattice. (1) The states at the Dirac point at X span a
four dimensional projective representation of the little group
at X which contains a four-fold rotation accompanied by a
sub-lattice exchange operation. (2) Four Weyl points on the
zone face due to a small inversion breaking perturbation. The
Chern number of each Weyl point is indicated. (3) Two Weyl
points appear on the line from X to W for a T-breaking Zee-
man field B oriented along that direction. B oriented along
other directions gaps all the Dirac points by breaking enough
rotational symmetry that no two-dimensional representations
are allowed. (4) Gapped phase obtained by breaking the four-
fold rotation symmetry or by applying a magnetic field in any
direction except along x̂, ŷ, or ẑ. The insulating phase can be
a normal, strong or a weak topological insulator [11].

tain three-fold rotations. This also rules out interior BZ91

momenta because non-symmorphic little groups without92

three-fold rotations exhibit FDIRs only on the boundary93

of the BZ [13]. To guarantee linear dispersion of bands94

around k, the symmetric kronecker product [Rk × Rk]95

of the FDIR with itself must contain the vector repre-96

sentation of Gk [14]. Finally, away from k, the FDIR97

must split so that the valence and conduction bands are98

non-degenerate everywhere except at k (Fig. 4).99

We apply the above criteria to two important space-100

groups. The space-group of diamond (227, Fd3m), which101

is also the symmetry group of β-Cristobalite BiO2, ex-102

hibits FDIRs RΓ at Γ and RX at X . GΓ contains three-103

fold rotation symmetry and [RΓ × RΓ] does not contain104

the vector representation of GΓ. Therefore the Γ point105
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FIG. 2. (a) Band structure of β-cristobalite SiO2. Energy
bands are plotted relative to the Fermi level. Each band is
two-fold degenerate due to inversion symmetry. The (high-
lighted) FDIR at −4.5 eV is split into two linearly dispersing
bands between X and Γ while the two degenerate bands along
X and W are weakly split. This FDIR is buried deep be-
low the Fermi level. (b) The β-cristobalite structure of SiO2

(BiO2). Silicon (bismuth) atoms (light gray) are arranged
on a diamond lattice, with oxygen atoms (dark gray) sitting
midway between pairs of silicon (bismuth).

in a diamond lattice cannot host a Dirac point. RX is106

a projective representation of GX which does not have107

any three-fold rotations because all the point group op-108

erations in GX are those of the group D4h. [RX × RX ]109

contains the vector representation of GX . Finally RX110

splits into either two doublets or four singlets away from111

X (Figs. 4(a) and 4(b)). Therefore the X point in space-112

group 227 is a candidate to host a Dirac semimetal if its113

FDIR can be elevated to the Fermi level. Indeed we show114

that β-Cristobalite BiO2 exhibits such a Dirac point at115

X , Fig. 3(c). The Dirac point at X in the FKM model116

is also spanned by states belonging to RX (Fig. 3(d)).117

The zincblende lattice (space-group 216, F4̄3m) has an118

FDIR R′
Γ
at Γ and the little groupG′

Γ
has a three-fold ro-119

tation symmetry. [R′
Γ
×R′

Γ
] contains the vector represen-120

tation of G′
Γ
. Mirror symmetry in G′

Γ
requires R′

Γ
to split121

into a two-fold degenerate representation and two non-122

degenerate representations along the (111) axis, which is123

also the symmetry axis for the three-fold rotation. Time124

reversal symmetry requires that the two-fold degenerate125

band remain flat along the (111) axis, Fig. 4(d). Thus126

the lowest band carries Chern number 0, while the two127

flat bands carry 1 and -1. Therefore the dispersion of R′
Γ

128

is not Dirac-like along (111).129

In HgTe, which takes the zincblende lattice, the degen-130

erate valence and conduction states at Γ span R′
Γ
and131

constitute the entire Fermi surface. It is known that in132

HgTe the valence and conduction bands disperse linearly133

in two directions around Γ and quadratically in a third134

(Fig. 4(d) and Ref. [15]). One might ask if a perturba-135

tion might turn HgTe into a Dirac semimetal. However136

the zincblende lattice does not satisfy the criteria for 3D137

Dirac points as outlined above, so HgTe cannot host a138

Dirac semimetal. (a) Γ is an interior point of the BZ and139
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FIG. 3. Band structures of (a) AsO2, (b) SbO2, and (c) BiO2

in the β-cristobalite structure, and (d) s-states on a diamond
lattice in the tight-binding model of Ref. [11]. Energy bands
are plotted relative to the Fermi level. Each band is two-fold
degenerate due to inversion symmetry. Insets: with increas-
ing atomic number of the cation, spin-orbit coupling widens
the gap along the line V from X toW . In BiO2 and SbO2, the
dispersion around the X point is linear in all directions indi-
cating the existence of Dirac points at X. BiO2 and SbO2 are
Dirac semimetals because their Fermi surface consists entirely
of Dirac points.

the little group at Γ contains a three-fold rotation. (b)140

Mirror symmetry requires two bands to be degenerate141

along the (111) axis but since the Chern number must142

vanish, the degenerate bands must be flat and consist of143

a conduction and a valence band. This is why we see144

quadratic dispersion along the (111) axis. (c) Breaking145

mirror symmetry splits the degenerate flat band but then146

the Fermi surface develops other non-Dirac like pock-147

ets to compensate for the non-zero Chern number. (d)148

Breaking three-fold rotation symmetry splits the degen-149

eracy at Γ entirely and the material becomes a topologi-150

cal insulator [16].151152153

We briefly discuss the theory behind the above crite-154

ria. We are interested in FDIRs of double space-groups155

at points k such that the valence and conduction bands156

are distinct in a small region around k and carry zero157

total Chern number. The Chern number of a degenerate158

representation can be determined up to an integer by the159

rotation eigenvalues of the valence bands. Electron states160

spanning an FDIR are equivalent to a p 3

2

quadruplet161

which exhibit eigenvalues e±i3π/n, e±iπ/n for a 2π/n ro-162

tation symmetry. Rotation eigenvalues of states at time163

reversed momenta about the degenerate point are com-164

plex conjugates. Therefore the FDIR will carry Chern165

numbers ±1 mod n for one valence band and ±3 mod n166

for the other with total Chern number ±4 mod n or ±2167

(b) (d)(c)(a)

FIG. 4. Linear splitting of four-fold degenerate irreducible
representations (FDIRs). If the symmetric kronecker prod-
uct of an FDIR with itself contains the vector representation
of the group to which the FDIR belongs, it will split in one
of the four possible ways displayed above. (a) The FDIR
splits into two two-fold degenerate bands. This situation is
realized at the X point of the FCC Brillouin zone in a dia-
mond lattice. (b) The FDIR splits into four non-degenerate
bands. This situation arises at the Γ point in zincblende if
mirror symmetry is broken (although the FDIR in zincblende
develops a non-zero Chern number due to three-fold rotation
symmetry at Γ). (c) The FDIR splits into two non-degenerate
and one two-fold degenerate band with linear dispersion. (d)
The splitting of the FDIR at Γ in zincblende. The two-fold
degenerate band is constrained to be flat implying quadratic
dispersion along that direction. The Chern number of this
representation is zero inspite of a three-fold rotation symme-
try because the conduction and valence bands are degenerate
away from Γ.

mod n for the FDIR. This is zero only for n = 1, 2, 4. If168

the conduction and valence bands are distinct in a small169

region around k, the Chern number of the FDIR will be170

non-zero if the little group Gk contains a 2π/3 or 2π/6171

rotation symmetry. In HgTe however, the little group at172

Γ contains a three-fold rotation symmetry but the FDIR173

at Γ has zero Chern number because one of the valence174

bands is degenerate with one of the conduction bands175

along the (111) axis.176

Non-symmorphic space-groups contain point group op-177

erations coupled with non-primitive lattice translations.178

For example, inversion interchanges the FCC sub-lattices179

in the diamond space-group. Representations of non-180

symmorphic space-groups at momenta inside the BZ mo-181

menta are obtained from regular representations, while182

those at the surface BZ momenta are obtained from183

projective representations of the associated crystal point184

group. The factor system of the projective representa-185

tion is chosen to implement the required non-primitive186

translation corresponding to the non-symmorphic point187

group operation [13]. A theorem by Schur guarantees188

that projective representations of a group can be ob-189

tained by restricting to the group elements the regular190

representations of a larger group called the central exten-191

sion group [13]. The central extension of a group is ob-192

tained by taking its product with another finite Abelian193

group. The important point to emphasize is that repre-194

sentations of non-symmorphic space-groups are obtained195

from representations of central extensions of the 32 point196

groups. Central extension groups exhibit FDIRs even197
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without three-fold rotations in the original point group.198

This is precisely why Dirac points can exist in 3D as199

symmetry allowed degeneracies.200

To realize a Dirac-like dispersion in the vicinity of an201

FDIR, some of the matrix elements 〈ψi|p|ψj〉, where |ψi〉202

span the FDIR, must be non-zero. This is guaranteed if203

the symmetric kronecker product of the FDIR with itself204

contains the vector representation of the central exten-205

sion group to which the FDIR belongs [14]. We restrict206

to the symmetric part of the kronecker product because207

matrix elements 〈ψi|p|ψj〉 correspond to level transitions208

between states spanning the same representation [15]. Fi-209

nally, the allowed representations in the vicinity of an210

FDIR should be such that each band disperses with non-211

zero slope in all directions. This is possible only if the212

valence band is distinct from the conduction band ev-213

erywhere except at the Dirac point. Fig. 4 illustrates the214

various possible ways in which an FDIR can split linearly.215

Although crystallographic symmetries determine216

whether 3D Dirac points can exist, physical and chem-217

ical considerations dictate whether they arise at the218

Fermi level without additional non-Dirac like pockets in219

the Fermi surface. In the FKM model, the Dirac point220

at X appears at the Fermi energy. However, in known221

materials on a diamond lattice s-states appear below the222

Fermi energy. In realistic systems, additional orbitals223

hybridize with these s-states and bands cross the Fermi224

level at other points besides X . The problem is espe-225

cially severe in space-group 227: without spin, the line226

V from X to W is two-fold degenerate. With spin-orbit227

coupling, this line splits weakly for lighter atoms so228

the bands dispersing along this line can hybridize and229

introduce additional Fermi surface. Forcing species with230

s1 valence states on the diamond lattice would fail to231

realize the FKM model. Indeed, ab initio calculations232

with group I elements and gold show that the splitting233

along V is insufficient to overcome this dispersion. In234

some cases, additional bands crossed the Fermi level. We235

performed ab initio calculations using the plane wave236

density functional theory package quantum espresso [18],237

and designed non-local pseudopotentials [19, 20] with238

spin-orbit interaction generated by OPIUM.239

We consider derivatives of the diamond lattice that240

remain in space-group 227. We place additional atoms241

in the lattice such that the configuration of added species242

allows its valence orbitals to either belong to the FDIR243

of interest, or appear away from the Fermi energy of the244

final structure. If the new species can split the nearby p245

states of the existing atoms away from the s levels, band246

crossing at the Fermi level can be avoided.247

One such structure is β-cristobalite SiO2 (Fig. 2(b)),248

which consists of silicon atoms on a diamond lattice with249

oxygen atoms placed midway along each silicon-silicon250

bond [17]. Oxygen atoms have two consequences: part251

of the O p-shell strongly hybridizes with the Si p-states,252

moving them away from the Si s-states, while the re-253

maining O p-states span the same representation as the254

Si s-states. A Dirac point can be realized by Si s−O p255

bonding/anti-bonding set of states. Fig. 2(a) shows that256

the Si s−O p bands are present and take a configuration257

similar to the valence and conduction bands in the FKM258

model, but appear well below the Fermi energy. Addi-259

tionally, the bands are nearly degenerate along the line260

V from X to W due to weak spin-orbit coupling.261

Heavier atoms substituting Si both widen this gap and262

bring the FDIR of interest at X to the Fermi level. Fig. 3263

shows the band structures of compounds β-cristobalite264

XO2 where X = As/Sb/Bi. The change in chemical iden-265

tity promotes the X s−O p four-fold degeneracy at X to266

the Fermi level, and stronger spin-orbit coupling widens267

the gap along V . BiO2 bears striking similarity to the268

FKM model, with linearly dispersing bands in a large269

energy range around a Dirac point at the Fermi level.270

Our calculations show that the phonon frequencies for β-271

cristobalite BiO2 at Γ are positive, so it is a metastable272

structure. Further calculations reveal that it becomes un-273

stable under uniform compression exceeding 2GPa, which274

represents a stability barrier of approximately 0.025eV275

per atom. On this basis, the possibility of synthesis ap-276

pears promising. However, Bi2O4 is also likely to take277

the cervantite structure (after Sb2O4, which has similar278

stoichiometry [21]) which is 0.5 eV per atom lower in en-279

ergy as compared to β-cristobalite and 60% smaller in280

volume. Therefore we conclude that β-cristobalite BiO2281

would be metastable if synthesized, although preventing282

it from directly forming the cervantite structure would be283

challenging. Nonetheless we have provided an existence284

proof of a Dirac semimetal in β-cristobalite BiO2 due to285

real atomic potentials at the DFT level.286
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