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We generalize the SU(N = 2) S = 1/2 square-lattice quantum magnet with nearest-neighbor
antiferromagnetic coupling (J1) and next-nearest-neighbor ferromagnetic coupling (J2) to arbitrary
N . For all N > 4, the ground state has valence-bond-solid (VBS) order for J2 = 0 and Néel
order for J2/J1 � 1, allowing us access to the transition between these types of states for large N .
Using quantum Monte Carlo simulations, we show that both order parameters vanish at a single
quantum-critical point, whose universal exponents for large enough N (here up to N = 12) approach
the values obtained in a 1/N expansion of the non-compact CPN−1 field theory. These results lend
strong support to the deconfined quantum-criticality theory of the Néel–VBS transition.

Just as the destruction of magnetic order by thermal
fluctuations is the paradigmatic example of a classical
critical point [1], the destruction of magnetic order at
T = 0 by quantum fluctuations is a prototypical ex-
ample of a quantum-critical point [2]. Sometimes the
quantum case is entirely different due to novel quan-
tum interference effects, which have no natural classical
analogues. An important example is that of the square-
lattice SU(N) quantum antiferromagnet, where the de-
struction of SU(N) symmetry-breaking Néel order in the
background of uncompensated Berry phases results in a
valence-bond-solid (VBS) state with broken translational
symmetry [3–5]. Recent work has presented speculative
albeit compelling arguments that a direct generically con-
tinuous Néel–VBS transition can exist. At such a decon-
fined quantum critical (DQC) point both order param-
eters are simultaneously critical [6], a striking feature
which is not contained in the conventional field-theory
description of two independent order parameters (where
direct transitions are generically first-order).

Given the major paradigm shift that could be spawned
by the DQC idea, it has been of great interest to verify
its validity by unbiased numerical studies of lattice spin
models (Hamiltonians) that harbor Néel–VBS transitions
[7–11]. The weight of evidence from such work indicates
that generically continuous Néel–VBS transitions indeed
exist in quantum spin systems, with initial skepticism
[9, 12] appearing increasingly unfounded [13, 14].

This DQC scenario predicts that the SU(N) Néel–VBS
quantum-critical point falls into the universality class of
the (2+1)-dimensional non-compact CPN−1 field theory
[15, 16]. The connection between the phase transition in
a microscopic Hamiltonian and the low-energy continuum
theory description relies on speculative assumptions that
are yet to be demonstrated convincingly. In order to
provide support for this connection, therefore, one has
to compare universal properties arising from these two
starting points. Currently, the only technique with which
the properties following from the CPN−1 action can be
studied analytically is the 1/N expansion [17], but it is
not clear whether the results of this approach are valid
down to the most interesting case of N = 2. To test the
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FIG. 1. (Color online) (a) Black (white) lattice sites indicate
the A (B) sublattice on which spins of the J1-J2 model (1)
transform as the fundamental (conjugate) representation of
SU(N). J1 couples nearest neighbors with an SU(N) singlet
projection and J2 connects next-nearest neighbors with an
SU(N) permutation. (b) Phase diagram of the model as a
function of N and g ≡ J2/J1.

DQC theory in an unbiased manner, it is thus of utmost
importance to find quantum models in which the SU(N)
Néel-VBS transition can be studied for arbitrary large
N , to compare the critical exponents with those of the
1/N expansion of the continuum field theory. We here
provide and study such a model.

Until now, the Néel-VBS transition could be accessed
in an unbiased manner only for N ≤ 4, by quantum
Monte Carlo (QMC) simulations of the so-called J-Q
model [7–11, 14], in which the S = 1/2 Heisenberg (J)
model is supplemented by certain multi-spin interactions
(Q) favoring a VBS state. It is clear that this model
alone cannot access the quantum transition for larger-
N , however, simply because for N ≥ 5 the J model
is itself VBS ordered [18, 19] and the Q term only in-
creases the strength of this order. To remedy this prob-
lem, we here introduce an SU(N) symmetric general-
ization of the J1-J2 Heisenberg model model, with an-
tiferromagnetic nearest-neighbor coupling J1 and ferro-
magnetic next-nearest-neighbor coupling J2 [illustrated
in Fig. 1(a)]. For all N ≥ 5, this model harbors a VBS
phase for J2/J1 = 0 and a Néel phase for J2/J1 = ∞.
By detailed unbiased QMC studies for 5 ≤ N ≤ 12, we
find that that the two phases are separated by a single
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phase transition, with no signs of discontinuities even on
the largest systems sizes studied (L × L spins with L
up to 128). Most remarkably, the anomalous dimensions
of the Néel and VBS correlation functions of the model
for large-N shows quantitative agreement with the ana-
lytically known [20–22] scaling dimensions from the 1/N
expansions of the non-compact CPN−1 model.

The J1-J2 model.—Our SU(N) symmetric model is de-
fined with a local Hilbert space of N states on each site of
the square lattice illustrated in Fig. 1(a). We adopt the
representation used previously in both analytic [4] and
numerical [18, 19] works on bipartite lattices, where the
sublattice-A states transform under rotations with the
fundamental representation of SU(N), and the B sub-
lattice states transform with the conjugate of this rep-
resentation; |α〉A → Uαβ |β〉A, |α〉B → U∗αβ |β〉B . The
state

∑
α |α〉A|α〉B is, thus, an SU(N) singlet. Pij is de-

fined to be the projector onto this singlet between two
sites i and j on different sublattices, i.e., Hij = −Pij/N
is the SU(N) generalization of the familiar Heisenberg
antiferromagnetic exchange (up to a constant). An-
other simple SU(N) invariant interaction is the permuta-
tion operator between two sites on the same sublattice,
Πij |αβ〉 = |βα〉, so that Hij = −Πij/N is the generaliza-
tion of the the familiar ferromagnetic Heisenberg inter-
action. The Hamiltonian we study here is given by

H = −J1
N

∑
〈ij〉

Pij −
J2
N

∑
〈〈ij〉〉

Πij , (1)

where 〈ij〉 and 〈〈ij〉〉 denote first (A-B) and second (A-A
and B-B) neighbor sites, respectively.

With J2 = 0 it is now well known that the J1 model
is Néel ordered for N = 2, 3, 4 and develops VBS order
for N ≥ 5 [18, 19]. On the other hand, with J1 = 0 each
sublattice forms a trivial ferromagnet. A small J1 � J2
will clearly lock the individual sublattice magnetizations
into a collective Néel ordered state. Thus, for each N > 5
there must be an intermediate value of g ≡ J2/J1 at
which there is a quantum transition between these two
phases (as we do not expect any other intervening phase).

QMC simulations.—All off-diagonal matrix elements
in Eq. (1) are explicitly negative and, hence, the model
is free of QMC sign problems [and it also satisfies Mar-
shall’s sign criterion, ensuring an SU(N) singlet ground
state]. To obtain exact (within statistical errors) numer-
ical results for its properties on large L × L lattices, we
use the stochastic series expansion QMC method with
global loop updates [23–25]. Throughout this work, we
set J1 = 1 and the inverse temperature β = L/J1 (re-
flecting the expected [6] dynamic exponent z = 1).

We characterize the Néel phase as one with a finite spin
stiffness ρs (measured by the fluctuations of the winding
number W of world lines; βρs = 〈W 2〉 [25, 26]). In the
magnetic phase, the static (ω = 0) Néel order-parameter
susceptibility χN diverges with the “quantum volume” of
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FIG. 2. (Color online) Curve crossings used to locate the
critical point for magnetic [VBS] order in the SU(5) J1-J2
model are shown in the left [right] panel. The quantity βρs
[ξVBS/L] diverges in the magnetic [VBS] phase and goes to
zero in the non-magnetic [non-VBS] phase when β = L/J1.
At a point where magnetic [VBS] fluctuations are critical, βρs
[ξVBS/L] becomes L-independent. These properties result in
crossings of curves for different L at the critical point. The
width of the vertical line shows the range of estimates of the
common Néel-VBS critical point; gc = 1.615(10). Fig. 3 shows
the analysis of the crossing points giving this result.

the system according to χN ∼ βL2. We define the SU(N)
VBS correlation function using the operator P defined
above in Eq. (1); N2CV (r, τ) = 〈P0,0+x(0)Pr,r+x(τ)〉 −
〈P0,0+x(0)〉2. When Fourier transformed at ω = 0,q =
(π, 0) it gives χV . This quantity can be used to test
for VBS order since it diverges in the VBS phase as
χV ∼ βL2. We also use the standard definition of the
correlation length of the VBS order ξV as the square root
of the second moment of the spatial correlation function
CV . Using these quantities we tested for long-range Néel
and VBS order as the ratio g = J2/J1 is varied for each
N and arrived at the phase diagram shown in Fig. 1(b).
We elaborate on the quantitative analysis below.

Nature of the phase transition.—Fig. 2 shows QMC
results for βρs and ξVBS/L as functions of the cou-
pling ratio g for the SU(5) model on lattices of size
L = 8, 16, 32, 64, and 128. The quantum-critical point for
the magnetic and VBS orders can be located by analysing
crossing points versus g in βρs and ξVBS/L, respectively,
computed on two different system sizes. As is clearly
evidenced directly from this raw data, there are cross-
ing points within a narrow window of g for both Néel
and VBS orders, and these crossing points drift toward
a common value gc with increasing L.

In Fig. 3 we have plotted the crossing points between
L and L/2 curves of βρs and ξVBS/L for SU(N) sys-
tems with N = 5, 6, 10, and 12. Numerical extrapola-
tions of the crossing data for both Néel and VBS orders
in the SU(5) and SU(6) cases (top two panels) provide
compelling evidence that in the thermodynamic limit
the crossing points for both order-parameters approach
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Néel

SU(6)

g

SU(5)

g

g

g

FIG. 3. (Color online) Convergence to a common critical
point of the finite-size estimates for the Néel and VBS phase
transitions for SU(5), SU(6), SU(10), and SU(12). The cross-
ing points of L and L/2 curves for the same quantities as in
Fig. 2 are shown for Néel (blue circles) and VBS (red squares)
order for L ≤ 128. For all four cases, the data are consistent,
within error bars, with both order parameters becoming criti-
cal at the same point when L→∞. Numerical extrapolations
(when reliable) are shown by dashed lines. For SU(10) and
SU(12) the VBS correlation function has significant sublead-
ing corrections that can be ignored only for the largest sizes
(see [27]). The grey lines show our estimates of the critical
points (with their widths corresponding to the error bars).

a common critical point. For SU(10) and SU(12) (bot-
tom two panels) there is non-monotonicity in the VBS
crossing points, making reliable numerical extrapolations
difficult. The source of this behavior is subleading cor-
rections in the VBS correlation function that increasingly
dominate the rapidly decaying leading power-law behav-
ior as N increases (see note [27]). However, even for the
SU(10) and SU(12) cases, for the largest system sizes the
leading behavior still dominates, and the VBS crossings
are consistent with the same critical point as obtained
from the better-behaved βρs crossing in the L→∞ limit.
There is, thus, good reason to believe that both orders
go critical at the same point for all N . We have found no
evidence for hysteresis or double peaked histograms that
would be expected for a first-order transition.

Since a reliable numerical extrapolation of the βρs
crossing is possible for each N , we use this quantity to
extract the quantum-critical points. Note that possible
weak corrections to standard scaling behavior in quan-
tities whose scaling from depends only on the dynamic
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FIG. 4. (Color online) Examples, for the SU(5) and SU(8)
models, of power-law scaling of the Néel and VBS order pa-
rameters close to the quantum-critical point. According to
Eq. (2) and standard finite-size scaling arguments, χN/βL

2 ∼
1/L1+ηN and χV /βL

2 ∼ 1/L1+ηV . The linear regression fits
(dashed lines) allow us to extract ηV and ηN , which are shown
in Fig. 5 as a function of N .

exponent, such as ρs, which have been discussed for the
J-Q model [11, 13, 14], would not affect the above anal-
ysis of crossing points versus g (see Appendix D in [11]).
Corrections to scaling of the quantity βρs itself will be
studied in detail elsewhere.

At a common quantum-critical point, it is expected
that the otherwise independent Néel and VBS order pa-
rameters will both have correlation functions that decay
as power laws in space (r) and imaginary time (τ);

CN,V (r, τ) ∼ (r
2

+ c2τ2)−(1+ηV,N )/2. (2)

The exponents ηN and ηV are universal numbers accord-
ing to standard theory of critical phenomena. Univer-
sality implies that they are independent of details of the
microscopic interactions of the model from which the cor-
relation functions are extracted, but they do depend on
the symmetry of the model, i.e., in our case they should
only depend on N of the SU(N) symmetry. To estimate
these exponents with QMC simulations, we have stud-
ied the N = 5, 6, 8, 10, and 12 models at values of the
coupling ratio g within the estimated critical points from
the analysis shown in Fig. 3. We extract the exponents
from the size dependence of the correlation functions, as
illustrated for two cases in Fig. 4.

Comparison with large-N results.—The extracted ex-
ponents ηN and ηV are shown versus 1/N in the main
panels of Fig. 5. For SU(10) and SU(12), ηV becomes too
large to extract reliably (see note [27]). Our main objec-
tive is to compare the results with those of the CPN−1

universality predicted by the DQC scenario [6]. Analytic
large-N results currently available for these indices are

ηN = 1− 32/(π2N), 1 + ηV = 2δ1N, (3)

where δ1 ≈ 0.1246. It is interesting to note that the
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FIG. 5. (Color online) Anomalous dimensions of the Néel
(left) and VBS (right) fields extracted from the critical scaling
analysis. The main panels show ηN and ηV versus 1/N . For
N = 2, 3 and 4, the data are for the J-Q model [10], and the
results for N > 4 are for our J1-J2 model. The analytic results
from the 1/N expansion of the CPN−1 field theory are shown
as thick red lines. The left and right insets show N(1 − ηN )
and (1 + ηV )/N , respectively. These quantities must be finite
in the N →∞ limit according to the DQC theory and should
be given by Eq. (3) (solid straight lines in the insets). The
next corrections to the exponents have not been computed
analytically yet, but we can estimate them approximately as
1 + ηV = 0.2492N + 0.68(4), ηN = 1 + 32/(π2N)− 3.6(5)/N2

(shown as dashed lines).

calculations underlying these two results are entirely dif-
ferent. While ηN was obtained from an 1/N expansion
of the Néel order parameter expressed in terms of the
CPN−1 fields [20], ηV was computed [21, 22] by exploit-
ing a non-trivial relation, predating the DQC theory, be-
tween monopoles in the field theory and the VBS order
on the lattice [4].

In Fig. 5 we show the results of the 1/N expansion,
Eq. (3), as continuous curves. In the insets we plot the
same data in such a way that in the 1/N → 0 limit we
can do a more direct comparison with the two irrational
numbers 32/π2 and 2δ1 that are predicted based on the
CPN−1 theory. We have also fitted these data to straight
lines, which give numerical predictions of the next-higher
corrections to the large-N forms in Eq. (3).

The most important features in Fig. 5 that lend sup-
port to the DQC scenario are: (1) The exponents ηN
and ηV for the N > 4 J1-J2 models are consistent in
trend with previous estimates for N = 2, 3, 4 based on
the entirely different J-Q model [10]. This is line with
the concept of universality between different microscopic
models, characteristic of a continuous transition. (2) The
Néel-order exponent ηN connects to the leading 1/N be-
havior, approaching 1 as N → ∞. This large value (in
contrast to the normal mean-field value η = 0 and typi-
cally very small values at conventional critical points) was
one of the important early “smoking gun” predictions of
the DQC scenario [6]. (3) The leading 1/N correction to

ηN is of the correct sign and within a few percent in mag-
nitude of the analytic result 32/π2 for the CPN−1 theory
[20]. (4) ηV increases rapidly with N and has a trend
that is fully consistent with the very non-trivial large-N
result [21, 22].

Conclusions.—We have provided an SU(N) symmetric
sign problem free model that allows, for the first time,
unbiased studies of the Néel-VBS transition for arbitrary
N > 5 on large lattices. Our model generalizes to SU(N)
the important J1-J2 model for SU(2) spins, which has a
long history of studies by exact diagonalization and var-
ious approximate methods (normally for antiferromag-
netic J2, in which case it has a Néel–VBS transition also
for N = 2, which, however, is difficult to study reliably
due to QMC sign problems) [28]. Our model opens new
avenues for detailed connections between large-N theory
and unbiased numerical simulations.

In this initial study, we found direct Néel-VBS tran-
sitions for 5 ≤ N ≤ 12, with no signs of discontinuities
up to large system sizes (L ≤ 128). When analyzed as
continuous quantum critical points, we found remarkable
agreement for universal exponents with the 1/N expan-
sion of the CPN−1 field theory. This quantitative com-
parison lends very strong support to the DQC theory [6].

The SU(N) spin model can be doped with fermions
(holes), and it should be possible to carry out QMC stud-
ies at least for a small number of mobile holes. This
would allow for a comparison with field theoretic predic-
tions for exotic metallic and superconducting states that
may arise close to DQC points [29].
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