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We study finite quantum wires and rings in the presence of a charge density wave gap induced by
a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states
emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open
chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi
equations describing massive Dirac fermions and bound end states. We treat interactions via the
continuum model and show that they increase the charge gap and further localize the end states.
The electrons placed in the two localized states on the opposite ends of the wire can interact via
exchange interactions and this setup can be used as a double quantum dot hosting spin-qubits. The
existence of these states could be experimentally detected through the presence of an unusual 4π
Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external
flux.

PACS numbers: 85.35.Be, 73.63.Nm, 03.67.Lx

Introduction. Over the last decades a number of pro-
posals have been made for solid-state implementations
of a quantum computer. Among these, electron spins in
GaAs quantum dots [1, 2] are most promising candidates
with unusually long coherence times [3]. Such dots con-
tain typically many levels which are filled according to
Hund’s rule. Thus, the condition for a spin-qubit, which
requires the presence of only a single unpaired electron,
becomes challenging [2], and the scalability of such an ap-
proach is still an open problem. In this letter we propose
a simple setup, involving periodically modulated gates on
top of a quantum wire (see Fig. 1), which eventually re-
sults in an effective double dot system. Due to the spatial
modulation of the gate voltage the energy spectrum of
the quantum wire acquires a charge density wave (CDW)
gap. Recently, similarly modulated setups have been dis-
cussed with focus on metal-insulator transitions [4] and
transport properties in an infinite-wire superlattice [5].
Here, we show that the modulated quantum wire sup-
ports localized states at each end of the wire, known as
Tamm-Shockley bound states [8, 9], with their energies
lying inside the gap. These end wave-functions are well
protected from the continuum and can host stable spin-
qubits.

We consider one-dimensional (1D) discrete and con-
tinuum models and find a number of remarkable features
for the end states resulting from the CDW modulation.
In particular, using exact numerical diagonalization of
the discrete open chain we analyze the stability of these
states in the presence of a random potential and find that
for weak disorder the end states remain stable. For the
continuum model we consider a periodically modulated
potential of the form ∆0 cos(kCDWx + ϑ), where ∆0 is
the strength of the potential, kCDW the CDW vector,
and ϑ a constant phase. Interestingly for ϑ = π/2 the
model maps to the Jackiw-Rebbi model for massive Dirac
fermions with midgap bound states [6]. Moreover at this
value of ϑ, the CDW induced zero energy bound states

FIG. 1. The figure shows a quantum wire (black) of length
L with negatively (blue) and positively (red) charged gates
forming a superlattice potential. Due to the induced charge
density modulation a bound state at each wire end can
emerge.

are remarkably robust to position dependent fluctuations
in ∆0.

We also study the role of interactions via fermionic and
bosonic techniques. The main conclusions are that the
repulsive interactions enhance the gap and as a result
the localization length of the end states are reduced. We
propose that by appropriately choosing the CDW gap
and length of the wire, the two opposite end states can
serve as effective double quantum dot which can be used
to implement quantum computing gates for spin-qubits.
Finally, we consider end states in a ring-geometry by con-
necting them directly via tunnel junction (see Fig. 4).
The Aharanov-Bohm (AB) oscillation in such rings ex-
hibits an unusual 4π periodicity, providing a striking sig-
nature of the existence of end states.

Lattice model. The typical lattice model for 1D spin-
less fermions in the presence of CDW modulation is de-
scribed by [7]

H = −t
N−1∑
j=1

[
c†j+1cj+h.c.

]
+∆

N∑
j=1

cos
[
2kCDW ja+ϑ

]
c†jcj ,

(1)
where cj is a fermion operator at the site j, N is the
total number of lattice sites, t > 0 is the hopping in-
tegral, ∆ > 0 the CDW gap, kCDW the CDW wave-
vector, a the lattice constant and ϑ is an arbitrary
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FIG. 2. (a) The part of the spectra around the gap of the
Hamiltonian given by Eq. (1), obtained by exact diagonal-
ization. The red bars denote two almost degenerate bound
(midgap) states. We have chosen for the parameters t = 7,
∆ = 0.8, and N = 320. (b) One of two bound states. Plotted
here is ψ+ = ψL + ψR, where ψL,R are states localized at the
left (right) end of the wire.

phase. The energy spectrum under the constraint of
open boundary conditions is obtained by exact numer-
ical diagonalization and we find that the criterion for
the existence of bound states depends on the sign of the
potential at the beginning and end sites. For illustra-
tive purposes we have considered kCDW = π/4a and
ϑ = π/2, this choice corresponds to negative potential
at the initial two sites with the overall profile given by
∆
∑N
j=1 cos

[
jπ/2 + π/2

]
≡ ∆(−1, 0, 1, 0,−1, ...). If the

phase of the potential is chosen such that one end of the
wire has positive whereas the other end has negative po-
tential then only one end state is obtained. On the other
hand, for a reflection symmetric potential profile about
the center of a long wire (with both ends having negative
potential), there will be two degenerate mid-gap states,
ψR and ψL, localized at the right and left boundaries
resp., being the well-known Tamm-Shockley states [8, 9].
Fig. 2(a) shows the spectrum of an 320 site chain. Reduc-
ing the wire length causes exponentially small splitting
in the energies of the bound states, with the new states
described by the symmetric and anti-symmetric combi-
nation of ψR and ψL. We obtain the bound states to be
in the middle of the gap only when ϑ = π/2 and t� ∆.

Disorder effects. For realistic systems, some degree
of random disorder is unavoidable. To study this effect
in our lattice model, we add a random on-site poten-
tial

∑
i Vic

†
i ci. Here, Vi is taken according to a Gaussian

distribution with zero mean and standard deviation γ.
Fig. 3 depicts the linear dependence of the root-mean-
square

√
σ[Ei] of the i-th energy level (i = 1 . . . N , i.e.,

for all energy levels) on the standard deviation of the
random disorder potential [10]. Since the slopes of the
bound states are less than 1, we conclude that the end
states remain gapped even for disorder strengths com-
parable to the gap (∆). As γ is increased, Anderson
localization sets in. We also observe as γ is increased
that the end states begin to mix with other (spatially)
nearby localized states, thus effectively causing the end
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FIG. 3. The dependence of the root-mean-square value√
σ[Ei] of the i-th energy level (i = 1 . . . N , i.e., for all en-

ergy levels) on the standard deviation of the random disorder
potential.

states to be more delocalized. Additionally, it is readily
observed from Fig. 3 that the end states are more affected
by disorder compared to all the continuum states. The
ratio thereof depends on ξ/L, since this difference is com-
ing from the spatial localization of the end states. For a
weak disorder, the aforementioned dependence is linear,
while for a strong disorder the dependence becomes more
complicated due to the emergence of Anderson localiza-
tion.

So far we have considered a particular realization of the
lattice model. We next consider the continuum case, this
limit describes the low-energy physics of a large class of
one-dimensional lattice models with CDW (or superlat-
tice) modulation. Recently, there has been intense activ-
ity on exotic quantum matter, such as Majorana fermions
(chargeless) [11–21] and massless Weyl fermions [22, 23]
among others. Here, we will show that our setup allows
for the realization of the Jackiw-Rebbi Hamiltonian [6],
describing a massive Dirac fermion of charge 1/2 as end
state.

Continuum model. We consider a quantum wire in
the presence of a gate-induced potential with periodicity
λCDW = 2π/kCDW . For carrier densities smaller than
the intraband energy gap only the lowest subband is oc-
cupied. The physics of the fermion mode Ψσ (σ =↑, ↓
is the spin index) in the lowest subband is described
in terms of the slowly varying right Rσ(x) and left
Lσ(x) parts and is expressed as Ψσ(x) = Rσ(x)eikF x +
Lσ(x)e−ikF x. For an open wire, the boundary condi-
tion Ψσ(x = 0) = 0 imposes the constraint [24, 25],
Rσ(x) = −Lσ(−x). Thus, the Hamiltonian can be ex-
pressed in terms of right movers only.

The non-interacting Hamiltonian can be written as a

sum of two parts, H0 = H
(1)
0 + H

(2)
0 , where the kinetic

part can be expressed in terms of only the right moving
fermions (the original range [0, L] now becomes [−L,L])

and is given by H
(1)
0 = −ivF

∫ L
−L dxR

†
σ(x)∂xRσ(x)
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(summation on the spin indices is assumed) and

the CDW term by H
(2)
0 = ∆0

∫ L
0
dx cos(2kCDWx +

ϑ)Ψ†σ(x)Ψσ(x), with ϑ being a constant phase factor.

Thus, H0 = (1/2)
∫ L
−L dxR

†
σH0Rσ, where Rσ(x) =

[Rσ(x),Rσ(−x)]T and the Hamiltonian density H0 for
each spin is the same and given by

H0 = −ivF τz∂x +m1(x)τx +m2(x)τy, (2)

where

m1(x) = − cos[2δkx+ ϑsgn(x)]∆0/2,

m2(x) = sin[2δkx+ ϑsgn(x)]∆0/2, (3)

and δk = kCDW − kF . If δk = 0 and the charge-density
wave vanishes at the boundary, i.e., ϑ = π/2, then it is
easy to verify that H0 satisfies the ‘chiral symmetry’ [26]
PH0 = −H0P (P is a complex conjugation operator).
Moreover, the eigenvalue equation (H0ψσ = εψσ) of the
chiral symmetric H0 is related to the Jackiw-Rebbi equa-
tion describing massive fermions, [6, 27]

HJRψJR = [τz∂x +msgn(x)]ψJR = ετxψ
JR, (4)

via the transformation, ψJR = U−1τyψ and HJR =

U−1H0τyU , where U = exp(i~τ · n̂2π/3) and n̂ = (̂i +

ĵ + k̂)/
√

3. Here, τx,y,z denote Pauli matrices act-
ing on the spinor Rσ(x). Solving the eigenvalue equa-
tion for L � vF /∆0 one obtains exponentially decay-
ing bound states ψσ ∼ exp[−(∆0/2vF )x] and ψσ ∼
exp[−(∆0/2vF )(L − x)] at x = 0 and x = L. Away
from the chiral symmetry point (ϑ 6= π/2) bound
states still exist as long as sinϑ > 0, with the eigen-
states given by ψσ ∼ exp[−i(∆0 exp[−iϑ]/2vF )x] and
ψσ ∼ exp[−i(∆0 exp[−iϑ]/2vF )(L − x)]. For infinite
wires the eigenvalues are degenerate and given by ε =
−∆0 cos(ϑ)/2. However, finite length introduces overlap
between the end states leading to an exponentially small
splitting in the energy (see below and Fig. 4).

In a realistic quantum wire the gap ∆(x) and the phase
ϑ(x) will invariably be position dependent. Assuming
this dependence to be weak, the correction in lowest order
in δ(x)/∆0 � 1 is given by,

δε = − ∆0

4vF

∫ ∞
0

dxδ(x) sin 2ϑ(x)e−∆0 sin[ϑ0]x/vF , (5)

where 〈δ(x)〉 = 0 and 〈ϑ(x)〉 = 〈ϑ0 + δϑ(x)〉 = ϑ0, and
they both vary slowly on the Fermi wavelength λF =
2π/kF . Thus, δε � ∆0, and the bound states remain
stable to weak perturbations.

Interaction effects. In the following, we consider the
effect of repulsive interactions on the end states. For sim-
plicity, we consider spinless fermions with kF = kCDW
and ϑ = π/2. As usual in 1D, the interactions can be
split into forward and back scattering parts. The for-

mer, HF = πvF g4

∫ L
0
dx(:JRJR: + :JLJL:), is responsi-

ble for the velocity renormalization [28] v = vF (1 + g4),

where g4 is the forward scattering interaction param-
eter, JR = R†(x)R(x) and JL = L†(x)L(x). On

the other hand, HB = πvF g2

∫ L
0
dx:JLJR: renormalizes

the gap at the lowest order in the backscattering in-
teraction parameter g2. The mean-field gap ∆̃(x) ∝
g2vF 〈R(x)R†(−x)〉 adds to the externally induced gap
m2(x) = sgn(x)∆0/2. We note that similar to m2(x),
∆(0+) = −∆(0−). This can be seen by invoking the
boundary condition, R(x) = −L(−x), and by express-
ing R(x) = exp(i

√
4πφR) and L(x) = exp(−i

√
4πφL) in

terms of the bosonic fields φR(x) and φL(x) which them-
selves satisfy [24],

√
4πφR(0) = −

√
4πφL(0) + π. Thus,

for weak interactions the bound states retain the same
form as for the non-interacting case but with renormal-
ized velocity and gap. To estimate the gap size we eval-
uate the self-energy, Σ̂, using the unperturbed Green’s
function for an infinite wire, G0(iω, k) = (iω − vF kτz −
∆0τy/2)−1. In the leading order, the gap renormalizes
to (∆0/2){1 + (g2/4)min[ln(vF /a∆0), ln(L/a)]}, where a
is the short distance cutoff. Assuming a well developed
CDW order, ∆0 > vFL

−1, we find that the localization
length given by ξ = (2vF /∆0){1+g4−(g2/4) ln[vF /a∆0]}
reduces with interaction. In other words, due to the re-
pulsive interaction between the continuum and the end
states, the latter states get squeezed.

The renormalization of the gap can be more rigor-
ously analyzed via bosonization. Using standard proce-
dures [29], we obtain the following form for the bosonic
Lagrangian

L(x, t) =
∑
ν=c,s

[ 1

2vνKν
(∂tφν)2 − vν

2Kν
(∂xφν)2

]
(6)

+
vF

2πa2

∑
η=↑,↓

yη sin[
√

4πφη − 2δkx− ϑ],

where the subscripts c, s refer to charge and spin, resp.
The ∂xφc/s field describes the charge/spin density fluc-
tuations and θc/s is the conjugated field, and φ↑,↓ =

(φc±φs)/
√

2. The Luttinger liquid parameters Kc/s and
velocities vc/s encode interactions, and y↑,↓ = a∆0/vF .
The sine term denotes the coupling of up and down spin
fermions with the external potential. As before, we as-
sume δk = 0. In general, there are two additional terms:
one of them arises due to backscattering between oppo-
site spin electrons and is given by cos(

√
8πφs), and the

other, cos(4
√
πφc − 4kFx), describes the Umklapp scat-

tering. However, both can be neglected as the two op-
erators flow to zero under a renormalization group (RG)
treatment.

The scaling dimensions of sin(
√

4πφ↑,↓), d↑,↓ =
(Kc + Ks)/2 ≈ 1, indicate that near commensurabil-
ity (δkvF /∆0 � 1) the sine terms are strongly relevant.
The parameters y↑,↓ have an identical flow [so as to pre-
serve the SU(2) symmetry, this also implies Ks = 1]
towards the strong coupling regime and yields an effec-
tive localization length ξ ∼ a(a∆0/vF )2/(Kc−3) for the
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bound state. Thus as before the role of the interactions
is to reinforce the externally induced gap. We note that
under RG additional terms of the type ∂iφc∂iφs (where
i = x, τ) are generated, however, they are marginal and
leave the essential physics unaltered.

Effective quantum dot. Similar to the discrete quan-
tum dot states, the presence of spinful, CDW-induced,
localized states in the quantum wire opens up an intrigu-
ing possibility for the realization of a quantum computer
device. These states are well separated from the con-
tinuum and can be filled by tuning the chemical poten-
tial to the end state level. We note that these ‘quan-
tum dots’ contain automatically only one orbital level,
and no individual gates are needed to tune them into
a single electron regime. Due to incomplete screening
there will be half-filling, i.e., only one state on either
end will be filled. This is simply because once one of
the energy levels on either end is filled, to fill the re-
maining two levels requires additional energy to over-
come the Coulomb repulsion. The physics of the half-
filled state is described by the usual Hubbard model,
H = −t

∑
σ=↑,↓(c

†
σ,Rcσ,L + h.c.) + U

∑
i=L,R n↑,in↓,i,

where t is the tunneling amplitude and U is the on-
site repulsion. For the energy hierarchy ∆ � U � t
the effective Hamiltonian acquires the Heisenberg form,
H = J ~SR · ~SL, where J = 4t2/U . The effective exchange
coupling J can be controlled by changing the gate poten-
tial which determines the overlap between the left and
right end modes and hence the tunneling amplitude t.
We note that for weak overlap, t is small and U large
making the J to be small, whereas for strong overlap
the opposite is true [33]. By switching on and off the
exchange constant in an appropriate sequence, the es-
sential operations of the quantum dot, both the ‘swap’
and ‘square-root-of-swap’ operations can be performed,
which, together with two single spin-qubit operations,
enables the fundamental XOR gate [1].

Finite overlap between the right and the left end states
can be ensured if their localization length ξ is on the order
of the wire length L. This restriction yields an estimate
for the strength of the periodically modulated external
voltage, ∆0 ∼ Λ(a/L)(3−Kc)/2, where Λ ∼ vF /a is the
band width. A GaAs quantum wire with length L ∼
1µm with approximately 10 − 20 gates requires a Fermi
wave-length λF ∼ 50nm. Such periodic potentials can be
achieved in nanowires by applying metallic gates or by
using other materials as barriers, for example, InP which
have a larger band gap than the host material such as,
e.g., InAs [35]. Using the realistic parameters [34], Λ ∼
0.2eV, Kc = 0.8, and lattice spacing a ≈ 5Å, we obtain
∆0 ∼ 0.04meV. Thus, the upper bound for temperatures
are in the achievable range of a few hundred milli-Kelvin.

Persistent currents. The localized states can be de-
tected via different experimental techniques, for exam-
ple, tunneling density of state, persistent current mea-
surements etc. Here we discuss the latter approach for

a

b
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FIG. 4. (a) Quantum wire (black) in an Aharonov-Bohm-
ring geometry with negatively charged gates (blue). The
bound states are localized on either side of the weak link
(grey) of strength t0. The energy (b) and persistent current
j = −∂F/∂Φ (c) dependence on the flux Φ/Φ0 are plotted
with the solid curves for the effective model (Eq. (7)) and
with the dashed curves for the lattice model (Eq. (1)). The
parameters for the red and blue solid curves correspond to
δ/t0 = 2.2 and (ε+ + ε−)/t0 = 6.2, and for the green curve to
δ/t0 = 2.0 and (ε+ + ε−)/t0 = 6.0 (see Eq. (8)). While for the
dashed curves the parameters are ∆/t0 = 3.85 (red and blue)
and ∆/t0 = 4.54 (green). The ratio ∆/t = 0.5 and N = 50 is
the same for all three dashed curves. Here, t0 is chosen such
that we have a degeneracy at Φ/Φ0 = 2π. Assuming only the
lower bound state is filled, the persistent current shows an
unusual 4π-periodicity as function of Φ/Φ0.

detecting the energy splitting between them. For this
the wire should be in a ring geometry so that the end
states are connected together via a tunnel junction and
also large enough such that the energy splitting between
the bound states is small yet the overlap of the localized
wave-functions remain non-zero. Such a set-up can en-
close magnetic flux Φ inducing AB oscillations in a meso-
scopic (phase-coherent) regime. Next consider a single
electron placed in one of the bound states. The effective
Hamiltonian for the spinless fermion in terms of the or-
thogonal symmetric, |+〉, and anti-symmetric, |−〉, states
can thus be written as [7]

H =
∑
η=±

[
εη + ηt0 cos

( Φ

Φ0

)]
|η〉〈η|+ it0 sin

( Φ

Φ0

)
×
[
|−〉〈+| − |+〉〈−|

]
, (7)

where Φ0 = h/e is the flux quantum, ε+ (ε−) the en-
ergy of the symmetric (anti-symmetric) mode, and the
tunneling across the weak link is associated with a factor
νt0 exp(iµΦ/Φ0), where ν, µ = ±1 and t0 the tunnel-
ing amplitude. For (anti-) clockwise tunneling we have
µ = +(−), while the sign of ν depends on the relative
sign between the wave-functions across the weak link.
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The energy eigenvalues are

ε1/2 =
1

2

(
ε− + ε+ ±

√
4t20 + δ2 − 4t0δ cos[Φ/Φ0]

)
, (8)

where δ = |ε+ − ε−|. At Φ/Φ0 = 2π the separation
between the two eigenvalues is minimal and given by
|2t0 − δ|. For large separations, the energy levels ex-
hibit the usual 2π dependence on the flux Φ/Φ0. In
contrast, for a flux sweep-rate ω larger than |2t0 − δ|
a scenario emerges wherein an electron placed in one of
the levels can jump to the second level and come back
to the original one after a second 2π phase, thus exhibit-
ing an unusual 4π-periodicity in the persistent current,
j = −∂F/∂Φ, where F is the free energy [30]. By inde-
pendently varying t0 and ω the splitting δ can be esti-
mated. For typical values t0 ∼ δ ∼ 10µeV we estimate
j ∼ 0.1nA, which is of measurable size [31, 32]. For
the observation, the phase-coherence length Lφ of the
ring needs to exceed L. For GaAs rings, we note that
Lφ >∼ µm for sub-Kelvin temperatures [31, 32].

The effective model, Eq. (7), does not take into account
the contribution arising from the filled Fermi sea of con-
tinuum states. However, when the number of continuum
states below the gap is even—the states come in pairs
with mutually canceling contributions to the current. On
the other hand, when this number is odd, the topmost
filled continuum state contributes to the current. Nev-
ertheless, the amplitude of the persistent current, due to
the end and continuum states, scale differently with the
lattice length N—the latter behaves like 1/N , while the
former like δ ∼ e−ξ/Na. Thus, for chains with N � 1 and
∆ ∼ ~vF /Na, the persistent current will be dominated
by the end states and our effective description fully ap-
plies. The dashed curves in Fig. 4 include contributions
from the bound states as well as the filled Fermi sea. In-
deed we have confirmed that the contributions from the
continuum states are two orders of magnitude less com-
pared to those from the bound states. Finally, for the
spinfull case, the amplitude of j simply doubles, whereas
the periodicity remains unchanged.

Conclusion. We have shown that a CDW gap in a
quantum wire can lead to bound states at the ends of the
wire which are stable against weak disorder and interac-
tions. They map to massive Dirac fermions described
by the Jackiw-Rebbi model. We discuss the criterion on
the quantum wire such that the two opposite end states
serve as effective double quantum dot which can be used
to implement quantum computing gates for spin-qubits.
Finally, we discuss the unusual 4π AB-periodicity in the
persistent current for a wire in the ring geometry.
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