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Abstract
Monotonic renormalization group flows of the “c” and “a” functions are often cited as reasons why cyclic or chaotic coupling

trajectories cannot occur. It is argued here, based on simple examples, that this is not necessarily true. Simultaneous
monotonic and cyclic flows can be compatible if the flow-function is multi-valued in the couplings.

Exact general results for renormalization group (RG)
flows are important as they may provide physical insight
for strongly coupled systems. The c-theorem for 2D
systems [1] and the a-theorem for 4D systems [2, 3] are
two such results that have been established for very broad
classes of models [4].

The c-theorem shows the existence of a monotonically
decreasing function of the length scale, c (L), which in-
terpolates between 2D Virasoro central charges of theo-
ries at conformal fixed points, and thereby provides an
intuitively correct count of system degrees of freedom
— fewer in the infrared than in the ultraviolet. The
a-theorem establishes similar monotonic flow for the in-
duced coefficient of the Euler density, a (L), for a 4D
theory in a curved spacetime background.

It is a common conclusion — a “folk theorem”— based
on these monotonically evolving “observables” that the
underlying couplings can not have RG trajectories which
are limit cycles or undergo other, perhaps more exotic
(e.g. chaotic), oscillations (e.g. see 2nd bullet item under
§6 in [5]). The point of this note is to explain and illus-
trate as simply as possible, with just one coupling, why
this conclusion may be unwarranted. (Somewhat simi-
lar criticism of the monotonic folklore has been proffered
in other contexts, involving degenerate Morse function
counterexamples for models with vorticity in the flow of
several couplings [6].)

In principle, we believe cyclic or perhaps even chaotic
coupling trajectories are not ruled out by either the c- or
a-theorems, nor are they necessarily excluded by other
monotonic “potential flow-functions.” To illustrate our
reasoning, we begin with a very simple example based on
a mechanical analogy. While this example does indeed
exhibit both monotonic flow and a cycling trajectory, it
has the peculiar feature — insofar as intuitively counting
degrees of freedom is concerned — that the monotonic
flow is unbounded both above and below. Neverthe-
less, we recall there is a field theory model that produces
just such behavior [8]. We then exhibit another exam-
ple where the monotonic flow is bounded below and the
coupling trajectory is not only cyclic but, in fact, chaotic.

The essential ideas, expressed for a single coupling
x (t), where t = lnL, are given by general statements

for a locally gradient RG flow,
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and by a specific example of a flow-function, namely,
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The corresponding β function is

β0 (x) = − d

dx
C0 (x) =

√

1− x2. (4)

The RG flow is given by

dx

dt
=

√

1− x2, (5)

which is easily recognized as a “right-moving” simple har-
monic oscillator (SHO) started from rest at x = −1.
This of course has a turning point, x = +1, reached
in finite ∆t, at which point the only way to continue
the evolution is to change branches of the square root,√
1− x2 → −

√
1− x2, to produce a “left-moving” SHO.

When this procedure is repeated as turning points are
encountered, the cyclic evolution emerges.
In addition, when the first turning point is encountered

C switches to a second branch, given by

C1 (x) = −3π

4
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2
x
√
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This gives the expected switch between branches for the
β function,

dx

dt
= − d

dx
C1 (x) = −

√

1− x2. (7)

More importantly, this C function continues to de-
crease monotonically as a function of t after switching
branches.
This is easily understood for this simple example just

because the monotonically changing C is nothing but the
negative of the definite integral of “the oscillator’s kinetic
energy” T = (dx/dt)

2
,

C = −
∫

βdx = −
∫

x(t)

x(0)=−1

dx

dt
dx = −

∫

t

0

Tdt, (8)
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FIG. 1: Four branches of the SHO C (x) function.

where the integral is taken along the actual trajectory of
the oscillator — a path that conserves total “energy,” cf.
RG invariants. (That is to say, C is just the reduced or
abbreviated action of Euler, Maupertuis, and Lagrange,
or perhaps more consistently with the notation, it is the
characteristic function of Hamilton.)
In fact, to obtain the correct evolution for the continu-

ous flow in question, it is absolutely necessary not only to
switch between the two branches for β (x) = ±

√
1− x2,

but also to switch among an infinite set of branches for
the C-function, as successive turning points are encoun-
tered. Thus, as an analytic function, C involves a non-
trivial Riemann sheet structure [7]. With initial flow to
the right, dx/dt|

t=0 > 0, after N encounters with turning
points, the evolution is given by

dx

dt
= (−)

N
√

1− x2 = − d

dx
CN (x) , (9)

CN (x) = −π

4
(1 + 2N)

− (−1)N
(
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2
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1− x2

)

, (10)

where arcsin is the principal branch of the inverse sine
function. We plot a few branches of C in Figure 1.
More directly, as a function of t,

C (t) = −1

2
(t− cos t sin t) , (11)

which is indeed monotonic in t, as shown in Figure 2.
The SHO example of simultaneous monotonic and

cyclic flows, while certainly familiar, is perhaps discon-
certing, not just because of the multi-valuedness of C (x),
but also because C (t) is unbounded both above and be-

low. However, this same cyclic flow may also be observed
by selecting different coordinates for the coupling, with-
out changing the physics of the system. Indeed, the
“Russian doll superconductivity model” of Leclair et al.
[8, 9] provides a single flowing coupling u that illustrates
what we have in mind. For that field theoretic model the
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FIG. 2: Monotonic flow for the SHO C (t).

RG β and corresponding C function are given by innocu-
ous polynomials,

du

dt
=

1

2

(

1 + u2
)

, C = −1

2
u

(

1 +
1

3
u2

)

. (12)

This same RG flow was also found earlier, in a differ-
ent context, by Glazek and Wilson [12]. While this is
uncomplicated local behavior, the global trajectories go
through infinite excursions in the course of their cyclic
evolution:

u (t) = tan

(

1

2
t+ arctanu (0)

)

. (13)

Thus it is difficult to keep track of the monotonicity of C,
if any, as it executes an infinite jump during the course
of each cycle.
The system is perhaps easier to grasp upon being ex-

pressed in terms of a “dual” coupling, x,

u = ±
√

1 + x

1− x
,

dx

dt
= ±

√

1− x2. (14)

That is to say, the RG flow of the model is equivalent to
the SHO as described earlier. Note the cyclic switch-
ing between the branches of u (x) corresponding to right-
moving (green) and left-moving (orange) SHO motion,
including an infinite jump upon reaching x = 1, as shown
in Figure 3.
Similar analysis can be carried out for theories with

several couplings. (For a mechanical analogy corre-
sponding to two couplings, i.e. a 2D configuration space,
consider trajectories on the plane as determined by a
rotationally invariant potential. Such trajectories are
again given by gradient flow and in such cases the radial
motion is governed by a multi-branched flow function.)
For field theory models with several couplings and limit
cycles in 4 − ε spacetime dimensions, see [10, 11]. We
leave the study of these for another venue, but we em-
phasize here that limit cycles are already known to be
physically relevant (see the discussion of many-body and
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FIG. 3: The Russian doll – SHO RG duality.

cold matter systems reviewed in [9]). Whether limit cy-
cles are to be found only in very peculiar cases, or are to
be widely encountered in many situations, remains to be
seen [12].

To complete this brief discussion, we consider a model
with a cyclic but chaotic trajectory which also exhibits
a monotonic flow-function. Again, a solvable example
involving a single coupling is sufficient to make the point.

Perhaps the simplest system with chaotic RG evolu-
tion is the Ising model with imaginary magnetic field,
described by the special case of the logistic map with pa-
rameter 4 [13, 14]. The exact trajectory and β function
are given by

x (t) =
(

sin
(

2−t arcsin
√
x
))2

, (15)

dx (t)

dt
= − (ln 4)

√

x (t) (1− x (t)) arcsin
√

x (t) , (16)

where the arcsin function in this last expression switches
branches upon encountering turning points. Similarly,
the corresponding C function, considered as a function
of x (t), also changes branches at turning points.

The direction of the flow in t is such that the origin
is an attractive fixed point in the infrared, so x → 0 as
L & t = lnL → +∞. On the other hand, x becomes
chaotic, exhibiting cycles of arbitrary length, as L → 0
and t → −∞. That is to say, for any initial x ∈ (0, 1]
the flow for t > 0 is monotonically toward the fixed point
at x = 0, while for t < 0 the flow is toward a turning
point at x = 1, where dx/dt reverses and the flow is
toward a second turning point at x = 0 — the zero of β
at x = 0 is a fixed point only for the first branch of β.
As the evolution continues into the UV, with t < 0, the
trajectory oscillates between the pair of turning points,
x = 0 and x = 1, with increasing average “speed.”

There are an infinite number of branches for both β (x)
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FIG. 4: Three branches of the logistic C (x) function.
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FIG. 5: Monotonic flow for the logistic C (t).

and C (x) in this case. Those branches are given by

βN (x) = − (ln 4)
√
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{
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N
⌊

1+N

2
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,
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Here arcsin is understood to be the principal branch,
⌊· · · ⌋ is the floor function, and N counts the number
of encounters with the trajectory turning points at x = 1
and x = 0. The first three branches of C (x) are shown
in Figure 4. As t → ∞, the flow is toward the origin,
with x (+∞) = 0 and C (+∞) = 0, while as t → −∞,
C → +∞. This is more clearly seen by plotting

C (t) = −
∫

x(t)

0

β (x) dx =

∫

∞

t

(β (x (t)))
2
dt , (18)

for 0 < x (t)|
t=0 < 1. The flow of C is monotonic in t

and bounded below, C ≥ 0. This is shown in Figure 5
for x (t)|

t=0 = 1/2.
A full discussion of Lagrangian models that realize this

second example will have to be given elsewhere. Suffice
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it to say here that chaotic RG trajectories have indeed
appeared in spin-glass systems [15, 16]. The point we
wish to emphasize is that such behavior is not necessarily
inconsistent with c- and a-theorems.
In conclusion, we have argued against the folklore that

cyclic RG trajectories are always incompatible with gra-
dient flow due to a monotonic potential flow-function.
We have given examples for which monotonic evolution of

C (t) is consistent with cyclic coupling trajectories when
the flow-function C is multi-valued in the couplings.
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