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Using accurate numerical relativity simulations of (nonspinning) black-hole binaries with mass
ratios 1 : 1, 2 : 1 and 3 : 1 we compute the gauge invariant relation between the (reduced) binding
energy E and the (reduced) angular momentum j of the system. We show that the relation E(j)
is an accurate diagnostic of the dynamics of a black-hole binary in a highly relativistic regime. By
comparing the numerical-relativity ENR(j) curve with the predictions of several analytic approxima-
tion schemes, we find that, while the canonically defined, non-resummed post-Newtonian-expanded
EPN(j) relation exhibits large and growing deviations from ENR(j), the prediction of the effective
one-body formalism, based purely on known analytical results (without any calibration to numerical
relativity), agrees strikingly well with the numerical-relativity results.

PACS numbers: 04.30.Db, 04.25.Nx, 95.30.Sf, 97.60.Lf

Introduction. – A ground-based network of interfer-
ometric gravitational wave (GW) detectors is currently
being upgraded and is expected, thanks to an improved
sensitivity, to detect, within a few years, the GW sig-
nals emitted during the inspiral and merger of compact
binaries. The realization of this exciting observational
prospect depends, however, on our theoretical ability to
accurately compute, within Einstein’s theory of general
relativity, the motion of compact binaries and its associ-
ated GW emission. Recent developments have made it
clear that the most efficient way to theoretically under-
stand the late stages of the dynamics of compact bina-
ries is to combine the knowledge coming from analytical
relativity techniques, such as traditional post-Newtonian
(PN) expansions [1–4], or the newer effective-one-body
(EOB) formalism [5–8], with the knowledge coming from
numerical relativity (NR) simulations (see [9] for a recent
review). Here, we shall restrict our attention to binaries
composed of two nonspinning black holes of masses m1

and m2. Our technique can, however, be applied to more
general systems.

The aim of this Letter is to present how NR data
can be used to explore, in a quite direct manner, the
dynamics of black-hole binaries, by computing the rela-
tion between the total energy, E , of the binary system,
and its total angular momentum, J . We compare the
(gauge-invariant) relation E(J ) extracted from NR sim-
ulations to corresponding analytical predictions from PN
theory [10], and from EOB theory [7]. We show that, dur-
ing the inspiral, at least up to the last stable orbit (LSO),
the gauge-invariant relation E(J ) is essentially indepen-
dent of the current uncertainties in the analytic modelling
of the emitted gravitational waveform, and can therefore
inform us rather directly on the conservative dynamics
of a black-hole binary. [This aspect of our work is akin
to a recent study of periastron advance in black-hole bi-
naries [11].]

Numerical relativity. – Our results are based on new,
accurate numerical simulations of (nonspinning) black-
hole binaries, which combine a 3 + 1 Cauchy-evolved

spacetime (using a variant of the “BSSNOK” evolution
system, with moving punctures and an extended wave
zone [12, 13]) with a Cauchy-characteristic extraction
(CCE) technique [14, 15]. The initial data for the 3 + 1
evolution are conformally flat, Bowen-York Cauchy data,
with the initial position and linear momenta of the punc-
tures determined from a 3PN-accurate dynamical evolu-
tion starting from a large initial separation [16]. These
initial data lead to orbits having an eccentricity e ∼ 10−4.
The CCE technique yields unambiguous estimates of the
waveforms at infinity, without the need to extrapolate
data extracted at finite radii. Here, we consider three
simulations with mass ratios q ≡ m2/m1 equal to 1, 2
and 3. The corresponding initial Arnowitt-Deser-Misner
(ADM) total energy, E0 ≡ EADM, total angular momen-
tum, J0 ≡ JADM (oriented along the z axis), and (initial)
eccentricity are given in Table I.
We use these numerical simulations to compute esti-

mates of the instantaneous values (at the retarded time
t), E(t), J (t), of the system energy and angular momen-
tum during the inspiral, by using the laws of conservation
of E and J between the binary system and the emitted
radiation. Namely, we compute

ENR(t) = E0 −∆ENR
rad (t) , (1)

J NR(t) = |J0 −∆J
NR
rad (t)| , (2)

where the radiated energy and angular momentum, be-
tween the initial (retarded) time t0 and time t, are com-
puted from the multipole moments NNR

ℓm of the NR (com-
plex) “news function” at infinity (we generally use units
such that G = c = 1):

∆ENR
rad (t) =

1

16π

ℓmax
∑

ℓ,m

∫ t

t0

dt′|NNR
ℓm (t′)|2 , (3)

∆J NR
z rad(t) =

1

16π

ℓmax
∑

ℓ,m

∫ t

t0

dt′mℑ
[

hNR
ℓm (t′)(NNR

ℓm (t′))∗
]

.

(4)
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TABLE I. Properties of the initial state of the NR simulations.

q ν e0 E
NR
0 J

NR
0

1 0.25 1.5× 10−4 0.9905197 0.9932560

2 2/9 1.2× 10−4 0.9908980 0.8559960

3 0.1875 7.6× 10−4 0.9933905 0.7675068

Here hNR
ℓm is the NR multipolar metric waveform,

Nℓm(t) ≡ dhℓm(t)/dt and ℓmax = 8. We do not write here
the expressions for the radiative losses of the other com-
ponents Jx, Jy of J . We took them into account, though
they turn out to have a negligible effect on the computa-
tion of J NR(t). While ∆ENR

rad only depends on the news
function N(t) (which is a direct output of the CCE code),
the angular momentum loss also depends on the metric
waveform h(t). We computed (for each multipole) h(t)
from Ψ4(t) = dN/dt = d2h/dt2 by the frequency-domain
integration procedure of [17] (with a low-frequency cut-
off ω0 = 0.032/(m1+m2)). In contrast to most studies of
gravitational waveforms, we consider here the full time
development of the GW emission from the start of the
NR simulation, i.e., we crucially take into account the
losses associated with the “junk radiation”, viz the ini-
tial burst of radiation associated to the relaxation of the
unphysical Bowen-York-type initial data, before the radi-
ation settles down to a quasi-stationary inspiral pattern.
Finally, we replace the two t-parametrized series

ENR(t), J NR(t) by the corresponding unparametrized
curve ENR(J ). One example (for the mass ratio q = 1)
of our computations of the relation E(J ) is shown in
Fig. 1. Here and below we work with the binding en-
ergy per reduced mass, E ≡ (E −M)/µ, and the dimen-
sionless rescaled angular momentum j ≡ J /Mµ, where
M ≡ m1 +m2, µ ≡ m1m2/(m1 +m2). Fig. 1 compares
the NR relation ENR(j) to predictions made by two dif-
ferent analytical formalisms: PN theory and EOB theory
(as explained in detail below). The inset shows the very
significant effect of the energy loss due to the junk radi-
ation emitted at the beginning of the simulation. Note
that j decreases during the inspiral.
Post-Newtonian theory. – There is a large ambiguity

in using PN theory to compute any observable quantity
(as illustrated for the GW phase in [18], and for the LSO
in [7, 19]). Here, we shall consider the canonical PN
expansion of the (gauge-invariant) function E(j) [10],
i.e., the truncated Taylor series in powers of 1/c2 of
E(j, 1/c2). At the third post-Newtonian (3PN) level it
has the structure (see Eq. (5.1) of [10])

EPN(j) = −
1

2j2

[

1 +
c1(ν)

c2j2
+

c2(ν)

c4j4
+

c3(ν)

c6j6

]

, (5)

where cn(ν) are polynomials (of order n) in the symmet-
ric mass ratio ν ≡ µ/M ≡ m1m2/(m1 + m2)

2. This
canonical “Taylor” (i.e., nonresummed) EPN(j) function
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FIG. 1. Equal-mass case: comparison between four E(j)
curves. The “Taylor” PN curve shows the largest deviation
from NR results, especially at low j’s, while the two (adi-
abatic and nonadiabatic) 3PN-accurate, non-NR-calibrated
EOB curves agree remarkably well with the NR one.

is shown in Fig. 1 (for q = 1) as a dashed line.
Effective-one-body theory. – The EOB formalism

maps the conservative dynamics of a two-body system
onto the dynamics of one body of mass µ in a sta-
tionary and spherically symmetric “effective” metric,
ds2eff = −A(r; ν)dt2 + (A(r; ν)D̄(r; ν))−1dr2 + r2(dθ2 +

sin2 θdϕ2). The EOB potentials A and D̄ have been
computed at the 2PN approximation in [5], and at
the 3PN approximation in [7] (at 3PN one must com-
plete the geodesic dynamics by terms, Q(p), quartic
in momenta). Here, we use the 3PN-accurate ver-
sion of the EOB Hamiltonian, as defined in 2000 [7]
(with ωstatic = 0 [3]), i.e., with the effective-metric
potentials D̄(u) ≡ 1 + 6νu2 + (52 − 6ν)νu3, and
A(u) ≡ P 1

3

[

1− 2u+ 2νu3 +
(

94
3
− 41

32
π2

)

νu4
]

, where

u ≡ GM/(c2r), and where P 1
3 denotes constructing a

(1, 3) Padé approximant, so that A(u) is a rational func-
tion of u of the form (1 + n1u)/(1 + d1u+ d2u

2 + d3u
3).

In addition to the Hamiltonian dynamics defined by
A(u), D̄(u) (and Q(u, p)), the EOB formalism defines a
radiation-reaction force Fϕ. Here, we use the “newly re-
summed” radiation reaction defined by [20, 21], with 3+2-
PN accurate Taylor ρℓm’s, and without incorporating any
“next-to-quasi-circular” (NQC) correction factor. The
main point is that the resulting radiation-reaction-driven
EOB dynamics uses only information that has long been
analytically known, and does not rely on any informa-
tion deduced from comparing EOB waveforms to NR
waveforms. The resulting (nonadiabatic) 3PN-accurate,
radiation-reaction driven EOB dynamics leads to the
curve EEOB3PN(j) shown in Fig. 1 as a red solid line. In

addition, we also show the adiabatic EOB EEOBadiabatic
3PN (j)

curve defined by considering the sequence of minima in
r (for a fixed j) of the (3PN-accurate) EOB Hamilto-
nian HEOB3PN(r, j). This adiabatic curve only depends
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FIG. 2. Differences between seven EX(j) curves and
EEOB3PN(j), for the three mass ratios considered. From top

to bottom the labelling is: X = PN, EOBwo NQC

5PN , EOBNQC

5PN ,

NR, EOB3PN (baseline), EOBNQC

3PN and EOBadiabatic
3PN . While

the PN curve exhibits the largest deviations, all EOB curves
remain close to the NR one during the full inspiral, especially
the 3PN-accurate, non-NR-calibrated one.

on the potential A(u) and has a cusp at the LSO, jLSO.
[The second branch starting at the cusp corresponds to
unstable circular orbits below the LSO.] The vertical dis-

tance EEOB3PN(j)−EEOBadiabatic
3PN (j) essentially represents

the kinetic energy linked to the (slow) inspiralling radial
motion.

Results of the triple comparison NR-PN-EOB. – Fig. 1
already exhibits several of the new results of our study:
(i) The NR E(j) curve starts at large j’s (i.e., large radial
separations) close to the nonresummed PN E(j) curve,
but then visibly deviates more and more from it dur-
ing the inspiral [conventionally ending at the adiabatic(-
EOB-defined) LSO, marked by a dashed vertical line].
(ii) By contrast the NR E(j) curve is so close, on the scale
of Fig. 1, to the (3PN-accurate, nonadiabatic) EOB pre-
diction that their difference is barely visible not only dur-
ing the inspiral, but also during the subsequent plunge.
[The leftmost red vertical line in Fig. 1 denotes the EOB
“light ring”, viz the end of the analytical inspiral-plus-
plunge dynamics, and the beginning of the EOB descrip-
tion of the merger and ringdown.] (iii) On the scale of
Fig. 1, one cannot see, during the inspiral, the difference
between the two EOB curves (nonadiabatic versus adia-
batic). (iv) In addition, when zooming on the beginning
of the ENR(j) curve (see inset), we find that, although

it coincidentally starts near the PN curve, it emits ex-
actly the amount of junk radiation required to relax to
the EOB prediction. When considering the mass ratios
q = 2 and q = 3, we obtained close analogs of Fig. 1,
which exhibit exactly the same results (i)–(iv).

In order to refine and quantify these results, we hence-
forth zoom on the small deviations between the var-
ious E(j) curves by using as horizontal baseline the
(nonadiabatic, 3PN-accurate) EOB curve, i.e., by plot-
ting the differences EX(j)−EEOB3PN (j), where the label
X denotes either NR, PN, EOB3PN

adiabatic, or other EOB
curves defined below. When focussing on the inspiral
dynamics (above the LSO), this leads to NR-EOB dif-
ferences of order 10−4, i.e., 300 times smaller than the
≃ 3× 10−2 change in the absolute value of E during the
inspiral, and 50 times smaller than the PN–NR differ-
ence ∼ 5 × 10−3 at the LSO. To discuss the meaning of
the small NR-EOB differences, it is important to esti-
mate the error attached to the NR ENR(j) curve. We
estimated an error on ENR(j) by measuring the effect
of changing, in turn, all the NR elements entering the
computation of the losses Eqs. (3)-(4): (i) we replaced
the CCE news by either the time integral of the cur-
vature waveform Ψ4(t) = dN(t)/dt extracted at a large
radius in the 3+ 1 code, or a Regge-Wheeler-Zerilli met-
ric waveform output by the latter code; (ii) we reduced
the maximum multipolar order ℓmax used in the sums in
Eqs. (3)-(4) from the default value ℓmax = 8 to ℓmax = 7
and ℓmax = 6; (iii) we varied the low-frequency cut-
off Mω0 used in the frequency-domain computation of
hℓm(t) from Ψℓm

4 (t) [17] between about 0.01 and 0.04;
(iv) we computed hℓm(t) from Nℓm(t) instead of Ψℓm

4 (t);
(v) we explored the sensitivity to changes of the initial
integration time t0 in Eqs. (3)-(4); (vi) we replaced the
high resolution NR data used as a baseline by medium
resolution ones.

Adding the effect of all these changes, and focussing
on the crucial change in the energy loss ∆Ejunk linked to
the initial burst of junk radiation, leads to a conserva-
tive error bar around ENR(j) indicated by a gray-shaded
region in Fig. 2. In that figure, we plot the differences
EX(j)−EEOB3PN(j) for q = 1, 2 or 3, and for six different
labels X: NR (solid, thick, black curve), PN (upper, thick
dashed blue curve), EOBadiabatic

3PN (lower, dash-dotted ma-

genta curve), EOBNQC
3PN (black, dashed curve, just be-

low the baseline), EOBNQC
5PN (thin dashed blue curve) and

EOBwoNQC
5PN (upper, solid blue curve, close to the previous

one). Here, as above, the EOB baseline EEOB3PN (corre-
sponding to the horizontal axis), as well as its adiabatic,

EOBadiabatic
3PN , and NQC-completed, EOBNQC

3PN , avatars,

use the 3PN-accurate EOB potentials of [7]. [EOBNQC
3PN

is defined according to the methods introduced in [21] by

adding a factor fNQC
22 (a1, a2) in the ℓ = m = 2 mode,

tuned to the maximum of the NR modulus.] Finally,

EEOB
NQC

5PN and EEOB
woNQC

5PN use the NR-calibrated, 5PN

potential A5PN(u) = P 1
5 [A

Taylor
3PN (u) + νa5u

5 + νa6u
6], for

(a5, a6) = (−6.3722, 50) [which lies in the middle of the
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“good region” of Ref. [21]], either with (NQC) or with-
out (wo NQC) NQC corrections. Figure 2 allows us to
refine and strengthen the conclusions drawn above from
Fig. 1, namely: (i) The canonical nonresummed EPN(j)
curve disagrees strongly with the NR results; (ii) The
3PN-accurate nonadiabatic EOB curve, EEOB3PN (i.e.,
the horizontal baseline) is remarkably close to the NR
results during the entire inspiral, with deviations that
are smaller than the “2σ” level. (iii) The inclusion of
nonadiabatic effects is important in continuing to ensure
this agreement during the late inspiral (see the difference

EEOBadiabatic
3PN − EEOB3PN). (iv) The inclusion of the NR-

fitted NQC correction has a negligible effect during the
inspiral: EwoNQC − ENQC . 2 × 10−5. (v) The EOB
predictions based on the NR-calibrated, 5PN potential
A5PN(u) of Ref. [21] (with or without NQC corrections),
are slightly less close (especially for q = 1 and 3) to the
NR result than the purely analytical 3PN-accurate EOB
prediction. We verified that the same conclusion holds for
the NR-calibrated 5PN EOB potential suggested in [22].
Summary. – We showed how to combine the knowl-

edge of the initial (ADM) energy and angular momen-
tum of a black-hole binary with accurate NR compu-
tations of its subsequent GW emission (including the
initial burst of junk radiation), to derive a NR esti-
mate of the relation between the rescaled binding energy
E ≡ (E − M)/µ and the rescaled angular momentum
j = J /(Mµ). Though the relation ENR(j) does include
nonadiabatic effects (linked to the radial motion during
the inspiral, and thereby to the radiation reaction Fϕ)
we have verified that the analytic uncertainties in the de-
scription of Fϕ were essentially negligible during the in-

spiral, down to, at least, the LSO. This potentially makes
the NR-acquired knowledge of the E(j) curve an accu-
rate diagnostic of the conservative dynamics of a black-
hole binary in a highly relativistic regime. By comparing
ENR(j) to various analytic descriptions of binary dynam-
ics, we found that, while the canonical, nonresummed
3PN-expanded relation EPN(j) exhibits large and grow-
ing deviations with respect to ENR(j), the EOB formal-
ism, based purely on known analytical results (without
NR calibration) predicts a relation EEOB(j) which is re-
markably close to ENR(j). Figure 2 clearly shows that
the NR curve ENR(j) provides us with a new, sensitive
tool for exploring the dynamics of a black-hole binary.
However, in order to extract from it reliable informa-
tion about the conservative dynamics of the binary one
needs (as already mentioned in [21]) to take into account
the fact that the energy balance between the binary sys-
tem and the emitted radiation involves an extra “Schott
term” [23] linked to field energy. We leave such a study
to future work.
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