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We study information processing in populations of Boolean networks with evolving connectivity
and systematically explore the interplay between the learning capability, robustness, the network
topology, and the task complexity. We solve a long-standing open question and find computationally
that, for large system sizes N , adaptive information processing drives the networks to a critical
connectivity Kc = 2. For finite size networks, the connectivity approaches the critical value with a
power-law of the system size N . We show that network learning and generalization are optimized
near criticality, given task complexity and the amount of information provided surpass threshold
values. Both random and evolved networks exhibit maximal topological diversity near Kc. We
hypothesize that this diversity supports efficient exploration and robustness of solutions. Also
reflected in our observation is that the variance of the fitness values is maximal in critical network
populations. Finally, we discuss implications of our results for determining the optimal topology of
adaptive dynamical networks that solve computational tasks.

PACS numbers: 89.75.Hc, 05.45.-a, 05.65.+b, 89.75.-k

In 1948, Alan Turing proposed several unorganized
machines made up from randomly interconnected two-
input NAND logic gates [1] as a biologically plausible
model for computing. He also proposed to train such net-
works by means of a “genetical or evolutionary search.”
Much later, random Boolean networks (RBN) were intro-
duced as simplified models of gene regulation [2, 3], focus-
ing on a system-wide perspective rather than on the often
unknown details of regulatory interactions [4]. In the
thermodynamic limit, these disordered dynamical sys-
tems exhibit a dynamical order-disorder transition at a
sparse critical connectivityKc [5]. For a finite system size
N , the dynamics of RBNs converge to periodic attractors
after a finite number of updates. At Kc, the phase space
structure in terms of attractor periods [6], the number of
different attractors [7] and the distribution of basins of
attraction [15] is complex, showing many properties rem-
iniscent of biological networks [3]. In cellular automata
(CA), complex computation has been hypothesized to oc-
cur where the rules show complex dynamics at “the edge
of chaos” [8, 9]. This claim was refuted in [10]. However,
the argument in [10] rests on symmetric spaces in the
CA lattice and rule space. These results therefore do not
apply to RBN. Phase transition in information dynamics
was studied in [11]. State-topology coevolution in RBNs
was studied by [12–14] and it was shown that networks
evolved toward a critical connectivity Kc = 2. This let-
ter presents the first study to link complex dynamics,
topology, and task solving in an open RBN.

In [16–19] simulated annealing (SA) and genetic algo-
rithms (GAs) were used to train feedforward RBNs and
to study the thermodynamics of learning. For a given
task with predefined input-output mappings, only a frac-
tion of the input space is required to train networks that
generalize perfectly on all input patterns. This fraction
depends on the network size and the task complexity.
Moreover, the more inputs a task has, the smaller the
training set needs to be to obtain full generalization. In
this context, learning refers to correctly solving the task
for the training samples while generalization refers to cor-
rectly solving the task for novel inputs. We use adapta-

tion to refer to the phase where networks have to adapt
to ongoing mutations (i.e., noise and fluctuations), but
have already learned the input-output mapping. In this
Letter, we study adaptive information processing in pop-
ulations of Boolean networks with an evolving topology.
Rewiring of connections and mutations of the functions
occur at random, without bias toward particular topolo-
gies (e.g., feedforward). We systematically explore the
interplay between the learning capability, the network
topology, the system size N , the training sample T , and
the complexity of the computational task.

First, let us define the dynamics of RBNs. A RBN is
a discrete dynamical system composed of N automata.
Each automaton is a Boolean variable with two possi-
ble states: {0, 1}, and the dynamics is such that F :
{0, 1}N 7→ {0, 1}N , where F = (f1, ..., fi, ..., fN), and
each fi is represented by a look-up table of Ki inputs



2

randomly chosen from the set of N automata. Initially,
Ki neighbors and a look-table are assigned to each au-
tomaton at random. For practical reasons we restrict
the maximum Ki to 8. An automaton state σt

i ∈ {0, 1}
is updated using its corresponding Boolean function,
σt+1
i = fi(σ

t
i1
, σt

i2
, ..., σt

iKi

).

The automata are updated synchronously using their
corresponding Boolean functions. For the purpose of
solving computational tasks, we define I inputs and O

outputs. The inputs of the computational task are ran-
domly connected to an arbitrary number of automata.
The connections from the inputs to the automata are
subject to rewiring and are counted to determine the av-
erage network connectivity 〈K〉. The outputs are read
from a randomly chosen but fixed set of O automata.
All automata states are initialized to “0” for each input
pattern before simulating the network.
Methodology.— We evolve the networks by means of

a traditional genetic algorithm (GA) to solve three com-
putational tasks of varying difficulty, each of which de-
fined on a 3-bit input: full-adder (FA), even-odd (EO),
and the cellular automata rule 85 (R85) [20]. The FA
task receives two binary inputs A, B, an input carry
bit Cin, and outputs the binary sum of the three in-
puts S = A + B + Cin on the 2-bit output and the
carry bit Cout. The EO task outputs a 1 if there is
an odd number of 1s in the input (independent of the
order), a 0 otherwise. R85 is defined for three binary
inputs A, B, and C, and outputs the negation of C.
The output for R85 task therefore only depends on one
input bit. The EO task represents the most difficult
task, followed by the FA and R85 task. Task difficulty
is the complexity of information integration needed in
the input to determine the output. This can be mea-
sured through information-theoretical decomposability of
a task. We can represent the task itself as the contin-
gency table of its inputs and outputs. Different decom-
position models of the task are the different ways that we
can calculate the marginal probabilities from the origi-
nal contingency table [21]. We calculate a weighted sum
of the vector of the information content of all possible
decomposition models of a task F . This can be sum-
marized in: decompositionF =

∑
m∈ModelsF

wmInfm,
where ModelsF is the set of all decomposition models
of F , and the weight wm of a model is proportional to its
degrees of freedom. The information content of a model
is calculated using Infm = 1 − Hm−HF

Hind−HF

. Here, Hm is
the entropy of the model, HF is the entropy of F , and
Hind is the entropy of the independence model (all input
and output variables are assumed independent). Higher
values for decompositionF mean that the task is more
decomposable and therefore less difficult.
The genetic algorithm we use is mutation-based only,

i.e., no cross-over operation is applied. For all experi-
ments we ran a population of 30 networks with initial
connectivity 〈Kin〉 = 1 and a mutation rate of 0.8. Each

mutation is decomposed into 1 + α steps repeated with
probability p(α) = 0.5α+1, where α ≥ 0. Each step in-
volves flipping a random location of the look-up table of
a random automata combined with adding or deleting
one link. Each population is run for 30, 000 generations.
We repeat each evolutionary run 30 times and average the
results. In each generation and for each tested input con-
figuration, the RBN is run for a convergence time t ∝ N

updates. Afterward, we run the network for an addi-
tional t ∝ N updates to record the activity of the output
nodes. If the activity of an output node is “1” for at least
half of the t time steps, we interpret the output as a “1”,
and as “0” otherwise. For an evolutionary run of training
size T , the training sample set M is randomly chosen at
each generation without replacement from the 23 possi-
ble input patterns. During each generation, the fitness
of each individual is determined by f = 1 − EM , where
EM is the normalized average error over the T random
training samples: EM = 1

T

∑
i∈M

∑
j∈O (aij − oij)

2. aij
is the value of the output automata j for the input pat-
tern i, and oij is the correct value of the same bit for
the corresponding task. The generalization score is cal-
culated using the same equation with M including all 23

inputs rather than a random sample. Finally, selection
is applied to the population as a deterministic tourna-
ment. Two individuals are picked randomly from the old
population and their fitness values are compared. The
better individual is mutated and inserted into the new
population, the worse individual is discarded. We repeat
the process until we have 30 new individuals in the new
population.

Results.— We observe a convergence of 〈K〉 close to
the critical value Kc = 2 for large system sizes N and
training sample sizes larger or equal to T = 4. For
T = 8, populations always evolve close to criticality for
moderate N . For smaller T , the average over all evo-
lutionary runs is found at slightly higher values of 〈K〉
(Fig. 1). If the average is taken only over the best indi-

viduals, however, 〈K〉 values close to Kc are recovered.
This observation can be explained from the fact that for
T < 8, due to the limited information provided for learn-
ing, some populations cannot escape local optima, and
hence do not reach maximum fitness. Sub-optimal net-
work populations show a large scatter in 〈K〉 values in
the evolutionary steady state, while those with high fit-
ness scores cluster around Kc = 2 (Fig. 1, inset). For
the simple R85 task we do not observe any convergence
to Kc = 2, independent of the training samples. For the
other tasks, the finite size scaling of 〈K〉 (Fig. 2) exhibits
convergence towards Kc with a power-law as a function
of the system size N . For T = 8, the exponent b of the
power-law for the three tasks EO, FA, and R85 is −1.63,
−1.11, and −0.30 respectively (Fig. 2). Altogether, these
results suggest that the amount of information provided
by the input training sample helps to drive the network
to a critical connectivity.
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FIG. 1. Convergence of the average network connectivity as
a function of the GA generations tg. FA task with T = 4 and
N = 100. The curves are averaged over 30 evolutionary runs
(red), only the 22 best (green), and the 15 best (light blue)
populations, respectively. Inset: scatter plot correlating aver-
age 〈K〉(tg) and average generalization 〈G〉(tg) of a successful
population (black) and a suboptimal population (purple).
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FIG. 2. Finite size scaling of 〈K〉 as a function of N for the
three tasks, EO (black), FA (blue), R85 (magenta), and the
training sample size T = 4 (a) and T = 8 (b). Points represent
the data of the evolved networks, lines represent the fits. The
finite size scaling for 〈K〉 shows that it scales with a power-law
as a function of the system size N . The dashed lines represent
the power-law fit of the form a ∗xb + c. We favor the data for
larger N by weighting the data according to N/Nmax, where
Nmax = 500. The insets show Kc − c as a function of N on a
log-log scale.

Interestingly, the population dynamics in our model
follow Fisher’s fundamental theorem of natural selection,
which attributes the rate of increase in the mean fitness
to the increased fitness variance in the population [22].
It has been shown in GAs that the diversity maximiza-
tion [23] makes more configurations of the search space
accessible to the genetic search to find optimal solutions
[16–18].

Indeed, we find that the standard deviation of the fit-
ness values in the populations has a local maximum near
Kc (Fig. 4, inset), with a sharp decay toward larger 〈K〉,
indicative of maximum diversity near criticality. Evi-
dently, this diversity helps to maintain a high fitness
population in the face of continuous mutations with a
fairly high rate (0.8 in our study). While the average
fitness can be lower (and often is), compared to less di-
verse populations, the probability to find and maintain
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FIG. 3. Near Kc, the topology of the network shows maxi-
mal variance. The insets show the standard deviation of the
topological measures for initial ER networks (magenta), the
evolved networks (black), and the XRG (blue). The solid lines
represent the topological measures in random networks. The
dotted line represents the same measure in RBNs.

high fitness solutions is strongly increased. Indeed, we
find that populations where the best mutant has maxi-
mum fitness (f = 1) sharply peak near Kc (Fig. 4), as
well as populations where the best mutant reaches perfect
generalization. To find a possible source of fitness diver-
sity, we determined several topological measures of the
networks [24]: the eccentricity (maximum shortest path
between a vertex v and any other vertex in a graph), the
betweenness centrality (the average fraction of shortest
paths between all vertices in a graph that passes through
a vertex v), the participation, and the characteristic path
length. These measures were calculated for Erdös-Rényi
(ER), eXponential Random Graphs (XRG), as well as
for the evolved networks (Fig. 3). In fact, we find that
the graph-theoretical measures have maximal variance
near Kc = 2. Similarly, other authors have shown that
dynamical diversity is maximized near Kc, too [25]. Our
results suggest that evolving RBN can indeed exploit this
diversity to optimize learning.

In addition, we find that during the learning process of
the networks, the in-degree distribution changes from a
Poissonian to an exponential distribution. In particular,
we observe that the topological properties of the networks
reach a compromise between ER graphs and the XRG.
The same observation was made in input- and output-
less RBNs that were driven to criticality by using a local
rewiring rule [13]. This significant topology change is
related to diversity (entropy) maximization during the
learning phase [26]. However, this is beyond the scope of
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FIG. 4. The conditional probability that evolving popula-
tions, where the best mutant reaches maximum fitness (i.e.,
fbest = fmax = 1), have average connectivity 〈K〉 shows a
sharp peak near Kc (black curve), the same is found for max-
imum generalization (light blue). Inset: diversity of evolving
populations, quantified in terms of the standard deviation
σ(f) of fitness distributions, has a maximum near Kc = 2.
All data sampled over the best 22 out of 30 populations for
full-adder task with T = 4 and N = 100.

this paper and will be discussed in a separate publication.
Finally, we measured the damage spreading in the

evolved RBNs [5] to determine their dynamical regime.
The damage spreading dt+1 is measured by changing the
state of a randomly selected node in two identical net-
works. The two networks are simulated for a single time
step and the damage spreading d̄ is then calculated by
averaging the ratio dt+1

dt
over many trails with random

initial network configurations. One observes that for crit-
ical networks d̄ = 1, for supercritical networks d̄ > 1, and
for subcritical networks d̄ < 1. We see that for networks
with a high fitness, d̄ peaks around 1 for all N .
Discussion.— We investigated the learning and gen-

eralization capabilities in RBNs and showed that they
evolve toward a critical connectivity of Kc ≈ 2 for large
networks and large input sample sizes. For finite size
networks, the connectivity approaches the critical value
with a power-law of the system size N . We showed that
network learning and generalization are optimized near
criticality, given task complexity and the amount of in-
formation provided surpass threshold values. Further-
more, critical RBN populations exhibit the largest diver-
sity (variance) in fitness values, which supports learn-
ing and robustness of solutions under continuous mu-
tations. By considering graph-theoretical measures, we
determined that Kc corresponds to a region in network
ensemble space where the topological diversity is maxi-
mized, which may explain the observed diversity in crit-
ical populations.
Interestingly, we observe that RBN populations that

are optimal with respect to learning and generalization
tend to show average connectivity values slightly below
〈K〉 = 2. This may be related to previous results indi-
cating that Kc < 2 in finite size RBN [27].
Examination of the attractors of the final population

confirms that the computation happens as partitioning
of the state-space into disjoint attractors [28]. During

the evolution, the attractor landscape changes so that
there are enough attractors to properly process the in-
puts. The entire task is encoded as a hyper cycle (i.e.,
a set of mutually reachable attractors) in the network
dynamics. The input combinations play the role of a
multi-valued switch that pushes the dynamics out of one
attractor into the next along the hyper cycle. Emergence
of the large attractor basins make the computation highly
robust to perturbations in the node state while maintain-
ing sensitivity to input signals. All networks in our final
population converge to fixed-point or cyclic attractors.

To summarize, we solved a long-standing question and
showed that learning of classification tasks and adapta-
tion can drive RBNs to the “edge of chaos” [3], where
high-diversity populations are maintained and on-going
adaptation and robustness are optimized. Our study may
have important implications for determining the optimal
topology of a much larger class of complex dynamical
networks where adaptive information processing needs
to be achieved efficiently, robustly, and with limited con-
nectivity (i.e., resources). This has applications, e.g.,
in the area of neural networks, complex networks, and
more specifically in the area of emerging molecular and
nanoscale networks and computing devices, which are ex-
pected to be built in a bottom-up way from vast numbers
of simple, densely arranged components that exhibit high
failure rates, are relatively slow, and connected in an un-
structured way.
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