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We study competition between two biological species advected by a compressible velocity field.
Individuals are treated as discrete Lagrangian particles that reproduce or die in a density-dependent
fashion. In the absence of a velocity field and fitness advantage, number fluctuations lead to a
coarsening dynamics typical of the stochastic Fisher equation. We investigate three examples of
compressible advecting fields: a shell model of turbulence, a sinusoidal velocity field and a linear
velocity sink. In all cases, advection leads to a striking drop in the fixation time, as well as a large
reduction in the global carrying capacity. We find localization on convergence zones, and very rapid
extinction compared to well-mixed populations. For a linear velocity sink, one finds a bimodal
distribution of fixation times. The long-lived states in this case are demixed configurations with a
single interface, whose location depends on the fitness advantage.

PACS numbers: 87.23.Cc, 47.27.E-

Challenging problems arise when spatial migrations
of species are combined with population genetics. The
population dynamics of a single species expanding into
new territory was first studied in the pioneering works of
Fisher, Kolmogorov, Petrovsky and Piscounov (FKPP)
[1–3]. Later, Kimura and Weiss studied individual-based
counterparts of the FKPP equation [4], revealing the
important role of number fluctuations. In particular,
stochasticity is inevitable at a frontier, where the pop-
ulation size is small and the discrete nature of the indi-
viduals becomes essential. Depending on the parameter
values, fluctuations can produce radical changes with re-
spect to the deterministic predictions [3, 5]. If f(x, t)
is the population fraction of, say, a mutant species and
1 − f(x, t) that of the wild type, the stochastic FKPP
equation reads in one dimension [6]:

∂tf(x, t) = D∂2

xf + sf(1− f)+
√
Dgf(1− f)ξ(x, t) (1)

where D is the spatial diffusion constant, Dg is the ge-
netic diffusion constant (inversely proportional to the lo-
cal population size), s is the genetic advantage of the mu-
tant and ξ = ξ(x, t) is a Gaussian noise, delta-correlated
in time and space that must be interpreted using Ito cal-
culus [6, 7]. In the neutral case (s = 0), number fluctua-
tions induce a striking effect in the population dynamics,
namely segregation of the two species. In 1D, segrega-
tion can be studied by looking at the dynamics of genetic
interfaces between the f = 0 and f = 1 states of Eq.
1, which behave as coalescing random walkers. This ef-
fect is confirmed experimentally in the linear inoculation
experiments on neutral variants of fluorescently labelled
bacteria illustrated in Fig. (1a) [23].
However, many species, from the distant past [8] up to

the present, have competed in liquid environments, such

as lakes, rivers and oceans. Interesting new phenomena
arise when population dynamics is coupled to hydrody-
namic flows [9], especially in presence of turbulence [10].
Moreover, recent observations demonstrated how advec-
tion can have a crucial role in determining the outcome of
biological competition. For example, a recent study [11]
demonstrated how the invasion of a european variant of
a crab species in the eastern North American coast was
determined by the direction of transport of larvae by sea
currents rather than any selective advantage. Further,
satellite observations of chlorophyll concentrations have
identified long lived, segregated patches of marine mi-
croorganisms off the eastern coast of South America [12],
where the tangential velocity field obtained from satellite
altimetry seems to have a determining role in segregating
the domains of different species.

When modeling competition in the ocean, it is often
appropriate to consider a compressible velocity field, both
because of inertial effects [13] associated with fairly large
microorganisms (diameter 5-500µm), and because photo-
synthetic bacteria and plankton often control their buoy-
ancy to stay close to the ocean surface [14]. In the latter
case, the coarse-grained velocity field advecting the mi-
croorganisms will contain a compressible component to
account for downwellings [15]. Gyrotaxis, the mechanism
by which swimming microorganisms try to mantain their
preferential direction [16], can also be thought as an ef-
fective compressible flow acting on the organisms.

Recent works studied the dynamics of a single popula-
tion in the presence of a compressible turbulent velocity
field in one and two dimensions [17, 18]. Here, the inter-
play between turbulent dynamics and population growth
leads to quasilocation on convergence zones and a reduc-
tion in the carrying capacity, defined as the limit on the
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total population size imposed by competition.

Our interest is to study the effect of advection on the
dynamics of two distinct populations. Due to compe-
tition and stochasticity, interactions between two pop-
ulations usually drive one of them to extinction. The
average time of this event (fixation time, in population
genetics jargon) is a quantity of great biological inter-
est since it determines the amount of genetic and eco-
logical diversity that the system can sustain. Studying
competition in a hydrodynamics context, where both a
compressible velocity field and stochasticity due to finite
population sizes are present, calls for a nontrivial gener-
alization of Eq. (1). One complication is that, because
of compressibility, the sum of the concentrations of the
two species is no longer invariant during the dynamics.
Thus, we must clarify the definition of f(x, t), the frac-
tion of one particular species. A biologically important
issue arises from overshooting: the density f(x, t) can
exceed unity near velocity sinks, resulting in an unphys-
ical imaginary noise amplitude in Eq. (1). This anomaly
arises because Eq. (1) assumes a fixed total concentra-
tion of individuals, so that if f(x, t) is the concentration
of one species, the other must have a concentration ex-
actly equal to 1− f(x, t).

In this Letter, we overcome these problems by intro-
ducing a new off-lattice particle model designed to ex-
plore how compressible velocity fields affect biological
competition. We consider two different organisms, A and
B, which advect and diffuse in space while undergoing
duplication (i.e. cell division) and density-dependent an-
nihilation (death). Specifically, we implement the follow-
ing stochastic reactions: each particle of species i = A,B
duplicates with rate µi and annihilates with rate µ̄in̂i,
where n̂i is the number of neighboring particles (of both
types) in an interaction range δ. Let N be the total
number of organisms that can be accomodated in the
unit interval with total density cA + cB = 1. To reduce
the number of parameters, we fix δ = 1/N as the av-
erage particle spacing in the absence of flow. Further,
we set µ̄A = µ̄B = µB = µ, but take µA = µ(1 + s)
to allow for a selective advantage (faster reproduction
rate) of species A. The particle model is simulated with
a second order Adams-Bashforth scheme for the particle
positions. At each time step, the probabilities of parti-
cles of duplicating or behing annihilated by competition
are computed from the rates defined above; the list of
particles is then stochastically updated. In the case of
duplication, a daughter particle is created at the same
coordinate as the mother. We will start by analyzing in
depth the neutral case s = 0 and consider the effect of
s > 0 in the end of the Letter. In one dimension and
with these choices of parameters, our macroscopic cou-
pled equations for the densities cA(x, t) and cB(x, t) of
individuals of type A and B in an advecting field v(x, t)

read

∂tcA =−∂x(vcA)+D∂2

xcA+µcA(1+s−cA−cB)+σAξ

∂tcB =−∂x(vcB)+D∂2

xcB+µcB(1−cA−cB)+σBξ
′ (2)

with σA =
√
µcA(1 + s+ cA + cB)/N and σB =√

µcB(1 + cA + cB)/N . ξ(x, t) and ξ′(x, t) are indepen-
dent delta-correlated noise sources with an Ito-calculus
interpretation as in Eq. (1).

a) b) c)

FIG. 1: (a) Experimental range expansion of the two neutral
E. coli strains used in Ref. [23], but grown about one day
longer (D. Nelson, unpublished). The black bar at the bottom
is due a small crack in the agar substrate. (b) Space-time plot
of the off-lattice particle model with no advecting velocity
field. A realization characterized by a pattern similar to the
experimental one has been selected for illustrative purposes.
(c) Particle model with a compressible turbulent velocity field.
Simulations are run until fixation (disappearance of one of the
two species); note the reduced carrying capacity and the much
faster fixation time in (c). Parameters: N = 103, D = 10−4,
µ = 1. Parameters of the shell model are as in [17].

The above equations follow from a microscopic mas-
ter equation via the Kramers-Moyal method [20], at this
order equivalent to Van Kampen inverse system size ex-
pansion [21]. Multi-species versions of the FKPP equa-
tions have been already considered in Refs [22], but not in
the presence of an advecting field or number fluctuations.
Although s = 0 may seem nongeneric in the context of
dynamical systems theory, this is a case of particular in-
terest in population genetics, where it corresponds to the
neutral theory of Kimura [4].

Simulations of the particle model with v = s = 0 result
in a dynamics similar to the one observed in experiments,
as shown in Fig.(1b). In this simple limit, our model
can be considered as a grand canonical generalization
of Eq (1), where the total density of individuals cA +
cB is now allowed to fluctuate around an average value
1. Details of the numerical implementation and the role
of density fluctuations are presented in [20]. Hereafter,
we fix the following parameters: N = 103, D = 10−4,
µ = 1 and L = 1 where L is a one dimensional domain
endowed with periodic boundary conditions. With these
parameters, the fixation time τf would be ∼ 104 for the
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one dimensional FKKP equation, and ∼ 103 for the well-
mixed case.
Introducing a compressible velocity field v(x, t), as

shown in Fig.(1c), leads to radically different dynam-
ics. Individuals tend to concentrate at long-lived sinks
in the velocity field. Further, extinction is enhanced and
the total number of individuals n(t) present at time t
is on average smaller than N . In order to study how a
velocity field changes τf , we first analyze two different
velocity fields: The first is a velocity field v(x, t) gener-
ated by a shell model of compressible turbulence [17, 19],
reproducing the power spectrum of high Reynolds num-
ber turbulence with forcing intensity F [20]. The second
is a static sine wave, v(x) = F sin(2πx), representing a
simpler case in which only one Fourier mode is present,
and thus a single sink, in the advecting field. In both
cases, periodic boundary conditions on the unit interval
are implemented.
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FIG. 2: Average fixation time τf for neutral competitions in
compressible turbulence and sine wave advection, as a func-
tion of (left) the reduced carrying capacity 〈Z〉F and (right)
forcing intensity F (small 〈Z〉F in the left panel corresponds
to large forcing in the right panel). (left) Red circles and blue
triangles are particle simulations. Other symbols denote sim-
ulations of the continuum equations with different resolutions
on the unit interval. The black dashed line is the mean field
prediction, τf = N〈Z〉F /2. In (right), particle simulations
are compared with the theoretical prediction τf = τ0 + c/F
(dashed lines), with fitted parameters τ0 = 9.5, c = 3.5 for
the shell model and τ0 = 16, c = 1.4 for the sine wave.

Fig.(2) shows the average fixation time τf for s = 0
in the first two cases, while varying the intensity F of
advection. In the left panel, we plot the fixation times
as a function of the time-averaged reduced carrying ca-
pacity 〈Z〉F , where Z(t) = n(t)/N is the carrying ca-
pacity reduction, i.e. the ratio between the actual num-
ber of particles and the average number of particles N
observed in absence of the velocity field. Plotting vs.
〈Z〉F allows comparisons with the mean field prediction,
τf = 2N〈Z〉F /µ, valid for well mixed systems (black

dashed line) [6]. For the shell model, we include sim-
ulations of the macroscopic equations (2) with different
resolutions (256 and 512 lattice sites on the unit interval),
obtaining always similar results for τf vs. 〈Z〉F .
In all cases, the presence of a spatially varying velocity

field leads to a dramatic reduction of τf , compared to
mean field theory. The fixation time drops abruptly as
soon as 〈Z〉 < 1, even for very small F . Simulations
suggest a singular limit of zero intensity (F ∼ 0) of the
velocity field (and consequently 〈Z〉 → 1 in Fig. 2), as
we discuss later.

To understand these observations note that global fix-
ation represents the coalescence of all the interfaces be-
tween the species, like those shown in Fig. (1a) and
(1b). While in the case s = v = 0 the interfaces per-
form a random walk [6], here they are also advected by
the velocity field. In particular, the average position x
of one interface, neglecting diffusion and number fluctu-
ations, evolves according to ẋ = v(x, t). The fixation
time is determined by the time needed for all interfaces
to reach the center of a sink and annihilate. Because
periodic boundary conditions are imposed, the number
of interfaces is always even, so all eventually annihilate
via pairwise collision. Upon expanding the velocity field
around a sink position x0, v(x) = k(x0 − x), we find
a characteristic time ∼ k−1. The fixation time can be
then estimated as τf=τ0 + ck−1, where τ0 is the typical
time to reach fixation at large strain rate k and c is an
dimensionless constant of order unity. This phenomeno-
logical theory describes well the data of Fig. 2, right
panel (dashed lines), where in the turbulent case we take
the forcing F as a proxy for k (k = 2πF for the sine
wave and k =

√
〈(∇v)2〉 ∝ F for turbulence). For an

odd number of interfaces, new phenomena could arise, as
the fixation time can become extremely long when only
one interface is left.

We study this possibility by introducing a converging
linear velocity field, v(x) = −kx with open boundary
conditions, so that the number of interfaces is no longer
topologically constrained to be even. At large k (small
〈Z〉k), the fixation time is comparable to the mean field
prediction. However, as the forcing decreases, it becomes
much larger than the mean field prediction (Fig. 3a,
dashed line). In this regime, the fixation time proba-
bility distribution is bimodal (Fig. 3a, inset): roughly
half of the realizations have a short fixation time (faster
than mean field), while the other half maintain coexis-
tence for an extended period. The space-time evolution
of these configurations in Fig. 3b reveals that the two mu-
tant species are demixed, with one dominant on the left
and one on the right of the sink. This configuration corre-
sponds to a stable stationary solution of the deterministic
version of Eqs (2) with s = 0. We expect this demixed
solution to have a lifetime (inaccessible in our numerical
simulations) which grows exponentially with N [7, 21].
Correspondingly, the average total heterozigosity 〈H(t)〉,
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defined as the probability of two random individuals to be
of different type [6], decays exponentially for very large
k (consistent with mean field theory [6]), but tends to a
constant, non-zero value for small values of k (Fig 3c).

FIG. 3: (a) Average fixation time τf in the presence of a
linear converging flow v = −kx, as a function of the reduced
carrying capacity 〈Z〉k. Inset on left shows the distribution of
fixation times in the case k = 0.075 and 〈Z〉k ≈ 0.38; the right
peak represents all realizations with fixation times t > 2000.
(b) Space-time plot of a realization with a very long fixation
time. (c) Average heterozigosity as a function of time for
different values of k.

FIG. 4: Coexistence of two species advected by a linear sink
k = 0.075, (left) species are neutral as in Fig. 3, (right) Red
reproduces 30% faster. Notice the shift in the position of the
interface.

Introducing a selective advantage combined with hy-
drodynamic flows leads to an even richer scenario. In
traditional population genetics, a more fit species (with
a selective advantage µs) expands into the territory of a
less fit one with a velocity v = 2

√
Dµs (also known as

Fisher velocity [1], see [5] for an extension to the strong
noise limit). In this case, such velocity can be offset by
advection. This is shown in fig. 4, where the neutral
case of Fig. 3 is compared with a simulation in which
red particles reproduce 30% faster (s = 0.3). Even with

such a large selective advantage, a genetic interface is
still present. We can estimate the rightward shift in the
interface position away from zero as δx = k−12

√
Dµs,

by equating the outward Fisher genetic wave velocity
vg = 2

√
Dµs [1] with the inward advection velocity at

distance δx from the origin. Because Fisher wave veloci-
ties are typically much smaller than velocities of marine
currents [11], the outcome of competition in acquatic sys-
tems will often be determined by the properties of the
flow rather than the species growth rates.

To conclude, we have introduced a new model of off-
lattice particle dynamics to study how compressible ad-
vection affects Darwinian competition. Compressible
flows lead to a remarkable new scenario, with the fixation
time now largely determined by how interfaces among
species collapse into the sinks of the velocity field, rather
than by diffusive annihilation. Our phenomenological
theory suggests a significative effect even for very weak
compressible fields. Compressible advection becomes ir-
relevant for the fixation time only when the time to drift
into the sinks (of order t ∼ k−1) is much larger than
the diffusion time (of order L2D−1, where L is a typical
linear size of the population). An obvious application of
the model is the study of compressible flows in higher
space dimensions, including flows relevant to biological
oceanography of photosynthetic organisms near the wa-
ter surface. Recent advances in experimental techniques
could also lead to tests of the one dimensional results.
Motility of bacteria has been studied in microstructures
of diameter comparable or even smaller to that of the or-
ganisms [24]. In this setting, a compressible flow could be
created by pumping liquid nutrient into the two ends of
the tube and extracting it from the center via a semiper-
meable membrane. Another possibility could be to study
floating microorganisms [14, 25] and exploit the com-
pressible effects caused by the vertical component of a
convecting velocity field [15].
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