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We study Escherichia coli chemotaxis behaviors in environments with spatially and temporally
varying attractant sources by developing a unique microfluidic system. Our measurements reveal
a frequency-dependent chemotaxis behavior. At low frequency, the E. coli population oscillate in
synchrony with the attractant. In contrast, in fast-changing environments, the population response
becomes smaller and out of phase with the attractant waveform. These observations are inconsistent
with the well-known Keller-Segel chemotaxis equation. A new continuum model is proposed to
describe the population level behavior of E. coli chemotaxis based on the underlying pathway
dynamics. With the inclusion of a finite adaptation time and an attractant consumption rate,
our model successfully explains the microfluidic experiments at different stimulus frequencies.

Cells use their signal transduction systems to trans-
form physical or chemical stimuli to intracellular signals
that eventually control gene expressions or enzyme ac-
tivities in order to carry out the appropriate responses
[1]. A well-studied example is the bacterial chemotaxis
system that controls cell motility in response to exter-
nal chemical cues enabling motile bacterial cells such as
E. coli to migrate towards favorable conditions or to flee
from repellents (see [2, 3] for reviews). Much progress has
been made in studying the bacterial chemotaxis signal-
ing pathway [4–8]. Recently, the intracellular responses
to various time-varying signals were measured quanti-
tatively in immobilized cells [9], revealing the modular
structure of the underlying signaling network and its dy-
namics [10]. However, it still remains a challenge to un-
derstand how the intracellular signaling dynamics deter-
mines the chemotaxis behaviors of motile cells in natural
environments that can vary both in space and time. We
address this question in this paper by using microflu-
idic experiments and developing a pathway-based pop-
ulation model. Previous microfluidic experiments have
investigated chemotaxis behaviors in stationary spatial
gradients [11–13]. Here, we develop a microfluidic sys-
tem with periodically changing spatial gradients. Our
experiments show that E. coli chemotaxis behavior de-
pends strongly on the external driving frequency. These
observations are inconsistent with the classical Keller-
Segel (K-S) chemotaxis equation [14]. This discrepancy
motivates us to develop a new pathway-based population
model for chemotaxis, which shows good agreement with
the experiments.

Our microfluidic device is shown in Fig. 1A. It consists
of two modulation parts and one observation channel. In
each modulation part, the ratio of the injection speeds

for buffer and attractant can be programmed to vary
as a function of time, creating the desired time-varying
composition of the solution mixture in the source chan-
nel. Details of the observation channel are shown in Fig.
1B. The two narrow connection passes and part of the
buffer regions at the side wall of the observation channel
are filled with agarose gel. The hydrosol inside serves
as a barrier to prevent bacteria from escaping and to
stop unwanted flow caused by hydrodynamic pressure;
meanwhile, it allows free diffusion of small attractant
molecules. The two connection regions serve as two con-
trol points, where ligand concentrations can be precisely
and independently controlled. The attractant concen-
tration in the observation channel is determined by dif-
fusion. When the attractant concentrations in the two
source channels are tuned periodically with the same pe-
riod but opposite phase, the concentration in the obser-
vation channel oscillates in time and appears quasi-linear
in space (see Fig. S2 in Supplementary Information (SI)).

We measured the (florescence-labeled) E. coli density
in response to attractant wave with different periods
T=80s, 100s, 200s, 400s, 600s, 800s and 1200s. The bac-
terial density oscillates with the same period as that of
the attractant (see movies S1, S2 in SI). However, the
phase of the cell density oscillation relative to that of
the attractant depends strongly on the driving frequency
(Fig. 1C&D). The full spatio-temporal cell density pro-
files for L-aspartate are shown in Fig. 2 for different T .
The bacterial population inside the observation channel
separates into two groups centered near the two control
points. The migration of cells between the two groups is
significant when the period is longer than 200s (Fig. 2B-
D), and it is much reduced for higher driving frequencies
(Fig. 2A). Our experiments clearly show that for fast-
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FIG. 1. (color) Experimental setup. (A) A panoramic pic-
ture of the two layer PDMS chip. (B) A zoomed in view
of the observation channel. The time lapse of the normal-
ized E. coli density and attractant concentration at a control
point is shown for periods T=800s (C) and 100s (D). The
ligand concentration is measured by adding a small amount
of fluorescein into attractant stocks. Bacterial densities are
determined by averaging the fluorescence intensity from the
fluorescence-labeled cells in a region of ±25µm around the
control points.

varying gradients, the cell population cannot follow the
attractant and exhibits oscillatory behaviors out-of-phase
with the stimulus waveform, in contrast to its responses
to slowly varying gradients.

The average motion of the bacterial population can be
characterized by the center of mass (CoM) of the bacte-
ria within the observation window [−300µm, 300µm]. In
Fig. 3A, we show the CoM position versus time for dif-
ferent driving period T . Both the amplitude (A) of the
CoM and the phase difference (∆φ) between the CoM
oscillation and the attractant oscillation change signifi-
cantly with T . A increases with T and saturates when
T ≥ 600s. Conversely, ∆φ increases with decreasing T ,
from (0.12± 0.02) π at T = 1200s to (0.74 ± 0.22) π at
T = 80s, as shown in Fig. 3B&C.

Bacterial chemotaxis motion follows a run and tum-
ble pattern with the tumbling frequency determined by
the chemo-effector concentration and the chemo-receptor
methylation level, which is controlled by the adaptation
process with a finite adaptation time τ . The cell’s drift
velocity v, determined by the bias of the tumbling fre-
quency, should therefore also follow a relaxation dynam-
ics (see SI for a detailed derivation). To capture this
relaxation dynamics of v in the simplest way possible,
we use a Langevine equation where v follows a linear re-
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FIG. 2. (color) The spatio-temporal profiles of the cell density
for different driving periods. (A) T = 100s, (B) T = 200s,
(C) T = 400s, (D) T = 800s. The normalized cell density
at a given position x and time t (scaled by T ) is represented
by the color (see color bar). L-aspartate concentrations at
the two source channels oscillate between 0.1mM and 0.9mM
with opposite phases. The gray scale stripes at the two sides
of each panel show the normalized ligand concentrations at
the left (L) and right (R) control point as a function of time,
t = 0 is when ligand concentration is maximum at the right
control point. The cell density is measured 20 frames per
period.
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FIG. 3. (color) Dynamics of the center of mass (CoM). (A)
The CoM dynamics for different driving periods (T ) are rep-
resented by dots of different colors, lines are fits to the data
with a sinusoidal function A cos (2πt+ π +∆φ). The dotted
black line shows the normalized ligand concentration at the
right control point. (B) The phase shift ∆φ and (C) the nor-
malized amplitude A/Amax for different T are shown together
with the model results. The error bars denote standard de-
viation of at least 4 repeats. Although A is small in high fre-
quency conditions (e.g., T=80s), it is still much larger than
stochastic noise (see Fig. S9 in SI for detail).

laxation dynamics with a constant time τ :

dx

dt
= v ,

dv

dt
= −(v − vd)/τ + η, (1)

where vd is the chemotaxis velocity. The Langevin equa-
tion is coarse-grained in time beyond the average run
time τr of individual cells, therefore the fluctuation in
velocity change, η(t), can be treated as a white noise:



3

< η(t)η(t′) >= 2∆δ(t−t′) with strength ∆ = ∆0v
2
0τr/τ

2,
where ∆0 is an order unity constant, and v0 is the av-
erage run speed. For simulations of chemotaxis motions
of individual cells, we use the signaling pathway based
SPECS model [15], where the internal signaling pathway
dynamics is described by the interaction between the av-
erage receptor methylation level and the kinase activity
which determines the switch probability of the flagellar
motor and eventually the cell motion. According to the
SPECS model simulations [15], the chemotaxis velocity

can be approximately expressed as: vd ≈ C ∂G([L])
∂x

[1 +

G−1
c

∂G([L])
∂x

]−1, where [L] is the ligand concentration, and
G([L]) = ln (1 + [L]/Ki) − ln (1 + [L]/Ka) is the free-
energy difference between active and inactive receptors,
with dissociation constants Ka and Ki respectively. The
constants C and Gc depends on the biochemical parame-
ters of the underlying pathway, such as receptor methyla-
tion/demethylation rates, receptor cluster size, and mo-
tor response cooperativity [15]. The parameters used
here are: τ = 35s, ∆ = 0.75µm2/s3, C = 8× 103µm2/s,
Gc = 7× 10−4µm−1, Ka = 3mM , Ki = 18µM .

The probability distribution function of cells at posi-
tion x with velocity v is given by P (x, v, t). From the
Langevin equation (1), we obtain the bi-variate Fokker-
Planck equation for P (x, v, t):

∂P (x, v, t)

∂t
= −

∂

∂x
(vP ) + τ−1 ∂

∂v
([v − vd]P ) + ∆

∂2

∂v2
P,

(2)
which has the same form as the Kramers equation [16].
When all the relevant external time scales are much
longer than the adaptation time τ , we can integrate
out the v−dependence by singular perturbation theory
[17] (see SI for details) or by approximating P (x, v, t) ≈
p(x, t)δ(v − vd) in Eq. (2) and derive the K-S equation:

∂p(x, t)

∂t
≈ −

∂

∂x
(vdp) + ∆τ2

∂2

∂x2
p. (3)

However, the K-S equation breaks down when external
time scales become comparable to or shorter than τ .

The signal that a swimming cell encounters is deter-
mined by the time-varying external environment convo-
luted with its own biased random motion. Therefore,
bacterial chemotaxis behaviors can not be solely deduced
from the signaling pathway dynamics of immobile cells
alone[9]. The population level chemotaxis model (Eq.
(2)), which incorporates both the essential internal sig-
naling dynamics [9] together with the cell motion, is
needed to predict the population level chemotaxis behav-
iors in spatio-temporal varying environments. Eq. (2) is
solved (See SI for details) to predict the chemotaxis be-
haviors in our experiments. As shown in Fig. 3B&3C,
both the predicted amplitude and the phase shift of the
CoM are in quantitative agreement with the experiments
as well as simulation results using SPECS [15].
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FIG. 4. (color) The phase shift of the cell density oscillation
at the control points ( ∆φcp) as a function of the driving
period from experiments and different models.

The observed phase delay (Fig. 3B) may be partially
attributed to the finite time needed for cell motion be-
tween the two control points. Simulations of the K-S
equation (Eq. (3)) indeed show a finite phase shift in
CoM. However, the phase shift from the K-S equation
is much smaller than the experimental results for high
frequency stimuli (Fig. S3). The break down of the
K-S equation is more pronounced at the control points
where the effect of cell motion between the two control
points is relatively small. As shown in Fig. 4, at the
control point, the K-S equation would predict a small
and roughly frequency-independent phase delay, which
disagrees with our experiments. In our model (Eq. (2))
with finite adaptation time, the phase delay increases
significantly with increasing frequency, in much better
agreement with our experiments. The small difference
between our current model and the experiments is prob-
ably due to the linearized relaxation dynamics used in
Eq. (2). When more realistic nonlinear adaptation dy-
namics is used, such as in the SPECS model [15], the
agreement with experiments becomes excellent (Fig. 4).
We are currently working on improving our population
model by incorporating more realistic internal adaptation
dynamics.
Instead of only passively responding to their environ-

ment, cells can also change their own environment, e.g.,
by emitting or consuming attractant molecules [18]. We
have investigated the effects of attractant consumption
by using both the metabolizable attractant L-aspartate
and its non-metabolizable analog α-methyl-DL-aspartate
(MeAsp) in our experiments. While the CoM motion is
qualitatively the same (see Fig. S4 for MeAsp), we find
the cell density profiles can be quite different for the two
attractants. As shown in Fig. 5A&B, at a particular time
when the ligand concentrations, [L]L and [L]R, at the left
and right control points are equal but [L]L is increasing
and [L]R is decreasing, the cell density profile peaks at
both control points for L-aspartate, while it only peaks
at the right control point for MeAsp.
Assuming the consumption rate depends linearly on
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FIG. 5. (color) The comparison of (normalized) cell density
profiles for (A) L-aspartate and (B) MeAsp at time t = (n+
1/4)T . There are two peaks for L-aspartate, and one peak for
MeAsp. The corresponding modeling results are shown in (C)
for L-aspartate and (D) for MeAsp. The ligand concentration
profiles and their trends at the control points are shown in
the insets of (C) and (D). The period is T = 80s.

the cell density, the ligand concentration follows:

∂[L]

∂t
= D

∂2[L]

∂x2
−

[L]

τc

n

〈n〉
, (4)

where D is the diffusion coefficient of the ligand (D ≈
500µm2/s used here), n(x, t) = N0

∫∞

−∞
P (x, v, t)dv

stands for bacterial density (N0 is the total number of
bacteria in the channel), τc represents the consumption
time at the mean density 〈n〉. By combining Eq. (4)
with Eq. (2) and taking into account the different con-
sumption rates for MeAsp (τc = ∞) and L-aspartate
(τc = 100s used here), the different cell density pro-
files can be reproduced (Fig. 5C&D). This difference
can also be understood intuitively. During the half pe-
riod prevailing to the time point shown in Fig. 5, the
ligand concentration at the right control point is higher
than that of the left control point. For MeAsp, the lig-
and profile is only controlled by diffusion, and thus has a
spatial gradient pointing towards the right control point
for most part of the channel (Fig. 5D inset). This spa-
tial gradient drives the cell density to peak only near
the right control point. However, for L-aspartate, as the
cells accumulate near the control points, the higher lig-
and consumption rates due to higher cell density there
create local L-aspartate gradients towards both control
points, which attracts more E. coli cells. This positive
feedback maintains the local high ligand concentration
(Fig. 5C inset) and cell density peaks (Fig. 5A&C) at
both control points against ligand and cell diffusions.
In summary, we have studied how E. coli cells respond

to spatio-temporal varying environments by developing
a novel microfluidic device that can generate chemical

gradients with a tunable frequency. We find that E.

coli chemotaxis response shows a significant phase delay
when the external driving frequency becomes faster than
the internal adaptation speed of the cells. Our measure-
ments thus reveal a direct connection between the “mi-
croscopic” dynamics of the underlying signaling pathway
and the “macroscopic” population level behaviors of the
cells. This delay is also responsible for the “volcano” ef-
fect in bacterial distribution around a sharp attractant
peak observed in computer simulations [19, 20]. Moti-
vated by these microfluidic experiments, we have devel-
oped a simple continuum model for bacterial chemotaxis
wherein a finite relaxation time τ is introduced in the
chemotaxis dynamics. We show that this new population
model agrees well the experiments even in high-frequency
regime where the classical K-S equation breaks down.
Previous work [21] has considered the effect of the finite
adaptation time by introducing the inertia term τ∂2p/∂t2

as a first order correction (in τ) to the K-S equation. Our
bi-variate model (Eq. (2)) is more accurate as it effec-
tively keeps terms of all orders in τ . More importantly,
new information on the signaling pathway dynamics [9],
unknown at the previous model developments [14, 21],
has been used into our model, e.g., in the expression of
the chemotaxis velocity vd. The full nonlinear adapta-
tion dynamics will be incorporated to further improve
our population model.
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