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We report inelastic neutron scattering measurements on Na2IrO3, a candidate for the Kitaev spin
model on the honeycomb lattice. We observe spin-wave excitations below 5 meV with a dispersion
that can be accounted for by including substantial further-neighbor exchanges that stabilize zig-zag
magnetic order. The onset of long-range magnetic order below TN = 15.3 K is confirmed via the
observation of oscillations in zero-field muon-spin rotation experiments. Combining single-crystal
diffraction and density functional calculations we propose a revised crystal structure model with
significant departures from the ideal 90◦ Ir-O-Ir bonds required for dominant Kitaev exchange.

PACS numbers: 75.10.Jm, 78.70.Nx, 75.40.Gb, 61.72.Nn

Transition metal oxides of the 5d group have recently
attracted attention as candidates to exhibit novel elec-
tronic ground states stabilized by the strong spin-orbit
(SO) coupling, including topological band- or Mott-
insulators [1], quantum spin liquids [2], field-induced
topological order [3], topological superconductors [4] and
spin-orbital Mott insulators [5]. The compounds A2IrO3

(A=Li, Na) [6, 7], in which edge-sharing IrO6 octahe-
dra form a honeycomb lattice [see Fig. 1b)], have been
predicted to display novel magnetic states for composite
spin-orbital moments coupled via frustrated exchanges.
The exchange between neighboring Ir moments (called
Si,j , S=1/2) is proposed to be [2]

Hij = −JKS
γ
i S

γ
j + J1Si · Sj , (1)

where JK > 0 is an Ising ferromagnetic (FM) term aris-
ing from superexchange via the Ir-O-Ir bond, and J1 > 0
is the antiferromagnetic (AFM) Heisenberg exchange via
direct Ir-Ir 5d overlap. Due to the strong spin-orbital
admixture the Kitaev term JK couples only the compo-
nents in the direction γ, normal to the plane of the Ir-O-Ir
bond [8, 9]. Because of the orthogonal geometry, different
spin components along the cubic axes (γ = x, y, z) of the
IrO6 octahedron are coupled for the three bonds emerg-
ing out of each site in the honeycomb lattice. This leads
to the strongly-frustrated Kitaev-Heisenberg (KH) model
[2], which has conventional Néel order [see Fig. 3a)] for
large J1, a stripy collinear AFM phase [see Fig. 3c)] for
0.4 . α . 0.8, where α = JK/ (JK + 2J1) (exact ground
state at α = 1/2), and a quantum spin liquid with Ma-
jorana fermion excitations [10] at large JK (α & 0.8). In
spite of many theoretical studies [2–4, 11–14] very few
experimental results are available for A2IrO3 [6, 7, 15].
Evidence of unconventional magnetic order in Na2IrO3

came from resonant xray scattering [15] which showed
magnetic Bragg peaks at wavevectors consistent with ei-
ther an in-plane zig-zag or stripy order [see Figs. 3b-c)].

Measurements of the spin excitations are very impor-
tant to determine the overall energy scale and the rele-
vant magnetic interactions, however because Ir is a strong
neutron absorber inelastic neutron scattering (INS) ex-
periments are very challenging. Using an optimized setup
we here report the first observation of dispersive spin
wave excitations of Ir moments via INS. We show that
the dispersion can be quantitatively accounted for by in-
cluding substantial further-neighbor in-plane exchanges,
which in turn stabilize zig-zag order. To inform future ab
initio studies of microscopic models of the interactions
we combine single-crystal xray diffraction with density
functional calculations to determine precisely the oxygen
positions, which are key in mediating the exchange and
controlling the spin-orbital admixture via crystal field ef-
fects. We propose a revised crystal structure with much
more symmetric IrO6 octahedra, but with substantial de-
partures from the ideal 90◦ Ir-O-Ir bonds required for
dominant Kitaev exchange [9], and with frequent struc-
tural stacking faults. This differs from the currently-
adopted model, used by several band-structure calcula-
tions [14, 15], with asymmetrically-distorted IrO6 octa-
hedra, with Ir-O bonds differing in length by more than
20%, improbably large in the absence of any Jahn-Teller
interaction, and with the shortest Ir-O bond length be-
low 2 Å, highly unlikely for a large ion like Ir4+. We show
that the previously proposed structure is unstable with
large unbalanced ionic forces, and when allowed to relax
it converges to a higher-symmetry structure.

As other “213” honeycomb oxides, Na2IrO3 has an al-
ternating stacking of hexagonal layers of edge-sharing
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FIG. 1: (Color online) a) Layer stacking along the monoclinic
c-axis with an in-plane offset along a (dashed box is the C2/m
unit cell). b) Basal layer (z = 0) showing the Ir honeycomb
lattice. c) Diagram to illustrate the layer stacking in the ideal
honeycomb lattice. Ideal stacking of layers and stacking faults
are explained in the text. d) Xray diffraction intensity in the
(0, k, l) plane showing rods of diffuse scattering in between
structural Bragg peaks along c

∗ with selection rule h+k = 2n
and k = 3m + 1 or 3m + 2 (n,m integers) modelled in e)
by frequent in-plane translational stacking faults of the type
shown by the thick arrows in c).

NaO6 octahedra and similar layers where two-thirds of
Na are replaced by Ir to form a honeycomb lattice with
Na in the center [see Fig. 1b)]. To determine the precise
structure xray diffraction was performed on a flux-grown
single crystal of Na2IrO3 [6, 16]. The diffraction pattern
showed sharp Bragg peaks which could be indexed by a
monoclinic unit cell [see Fig. 1a)] derived from a parent
rhombohedral structure with an ideal repeat every three
layers. The monoclinic distortion leads to an in-plane
shift of successive Ir honeycombs differing by 1.2% from
the ideal value [−c cosβ compared to a/3, see Fig. 1a)],
well above our instrumental resolution, which enabled us
to determine that our sample was a single monoclinic
domain. The detailed refinement [16] was performed us-
ing both the published C2/c (No. 15) unit cell with 15
refined atomic positions leading to values somewhat sim-
ilar to Ref. [6], and an alternative, higher-symmetry and
half the unit cell volume, C2/m model (No. 12, shown in
Figs. 1a-b) (as found for the related Li2IrO3 [17]), with
only 7 refined atomic positions listed in Table I. Other
structural motifs reported for “213” honeycomb oxides
[18] including Na2PtO3, Li2TeO3, Na2TbO3 were also
tried but did not provide a good fit. We also tested for
Ir/Na site admixture but this did not improve the agree-
ment with data.

TABLE I: Structural parameters extracted from single-crystal
xray data at 300 K. (C2/m space group, a = 5.427(1) Å,
b = 9.395(1) Å, c = 5.614(1) Å, β = 109.037(18)◦ , Z=4). All
sites are fully occupied. U is the isotropic displacement. The
goodness-of-fit was 2.887 (Rint = 0.1247, Rσ = 0.0584) [16].

Atom Site x y z U(Å2)

Ir 4g 0.5 0.167(1) 0 0.001(1)

Na1 2a 0 0 0 0.001(6)

Na2 2d 0.5 0 0.5 0.009(7)

Na3 4h 0.5 0.340(2) 0.5 0.009(6)

O1 8j 0.748(6) 0.178(2) 0.789(6) 0.001(6)

O2 4i 0.711(7) 0 0.204(7) 0.001(7)

The C2/c structure can be described as a “super-
cell” obtained from the C2/m structure by small dis-
placements of atoms (of order a few % of the unit
cell dimensions) leading to a doubled unit cell volume.
Although C2/m and C2/c gave comparable agreement
with the main Bragg peaks, the larger C2/c unit cell
should be manifested experimentally by the appear-
ance of new “superstructure” peaks at positions such as
(odd,odd,half-integer) in the small unit cell description
(C2/m). These superlattice peaks, however, were not ob-
served in the data [16], ruling out the C2/c model. Fur-
thermore, in structural optimization calculations using
VASP [16, 19] (also confirmed by an all-electron LAPW
code [20]) we find that the C2/c structural model, which
has asymmetrically-distorted IrO6 octahedra, is unsta-
ble: (i) the forces on oxygen are very large, exceeding 3
eV/A for the published C2/c cell [6] and (ii) when the
structure is allowed to relax the oxygens move such as
to recover the more symmetric C2/m structure with the
Ir-O distances converging to within 1.1% of the experi-
mentally refined values in Table I. The IrO6 octahedra
are much more symmetric in the C2/m model with Ir-O
distances and Ir-O-Ir bond angles ranging from 2.06 to
2.08 Å, and 98 to 99.4◦, respectively, compared to the
wider ranges 1.99 to 2.43 Å , and 91 to 98◦ proposed
before [6].

In addition to sharp Bragg peaks, visible diffuse “rods”
of scattering were also observed [see Fig. 1d)] and could
be quantitatively understood [compare with calculation
in Fig. 1e)] in terms of a structural model that allows for
the possibility of faults in the stacking sequence along
the c-axis. The stacking of atomic layers can be eas-
ily visualized with reference to projections in the basal
plane [Fig. 1c)], where A defines a nominal hexagonal
lattice (made up of three triple-cell sublattices A1-A3),
and B and C are also hexagonal lattices with positions in
the center of a triangles of A sites. The atomic stacking
is always in the ABC sequence to minimize the inter-
layer Coulomb energy, i.e. Ir-O-Na-O-Ir-O is A1-B-C-A-
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FIG. 2: (Color online) a) ZF µ+SR spectra on a polycrys-
talline sample of Na2IrO3 above and below TN . Solid lines
are (top) guide to the eye and (bottom) a fit described in the
text. b,c) Fitted parameters as a function of temperature.

B1-C. Only Ir layers have a sublattice index, indicating
the position of the Na at the honeycomb center, as the
other atomic layers are full hexagonal lattices. However,
if neighboring Ir layers are only weakly interacting (as
they are separated by a hexagonal NaO2 layer) then the
second Ir layer could be shifted to another position on
the B-lattice, say B2 [thick arrows in Fig. 1c)] or B3,
with only minimal energy cost, as that would not affect
the bonding with the fully hexagonal NaO2 layers below
and above. To quantitatively verify this idea, we per-
formed structural optimization calculations using VASP
[16] in an extended unit cell to include a stacking fault
of the type illustrated in Fig. 1c) and found that the en-
ergy cost of a stacking fault is extremely small, below 0.1
meV/Å2, explaining why such stacking faults are very
likely to occur.

The calculated scattering for such a microscopic model
[16] indeed reproduces well the selection rule for where
diffuse scattering occurs in Fig. 1d-e). In particular there
is no diffuse scattering along (00l), as this corresponds to
adding all layers in phase irrespective of their in-plane
translations. Also there is no diffuse scattering along
(0, 6n, l) (n integer), as again layers add in phase be-
cause the two allowed in-plane translations have a phase
factor equal to a multiple of 2π. We use the strength of
the diffuse scattering integrated between (020) and (021)
relative to the intensity of the (020) peak (to have similar
absorption factor), obtained experimentally as ≃ 0.42, to
estimate the probability for stacking faults p ≃ 9%, this
means that on average one fault occurs every 1/p ≃ 10
layers. We measured over 30 crystals from a batch and
all showed diffuse scattering, suggesting that this is a
common structural feature.

Magnetic order of the Ir spins was detected by zero-
field (ZF) muon-spin rotation (µ+SR) on a powder sam-
ple of Na2IrO3. Example raw spectra are shown in
Fig. 2a). At temperatures below TN = 15.3 K, we observe
clear oscillations in the time-dependence of the muon po-
larization, characteristic of quasi-static local magnetic

fields at the muon stopping site. Fits to the time-
dependent muon data reveal that two frequencies are
present, indicating the presence of two distinct muon
stopping sites with different local fields. The full spec-
tra was fitted to the form A(t) = A1e

−λ1t cos(2πν1t +
φ1) + A2e

−λ2t cos(2πν2t + φ2) + A3e
−Λt + Abg, where

the last two terms account for muons polarized paral-
lel to the local magnetic fields, and muons stopping in
the sample holder (or cryostat tail), respectively. Using
our best-fit parameters we estimate that the muons oc-
cupy the two sites with a probability ratio of about 9:1.
Both local fields set in at a common temperature, but
have a distinctly different temperature dependence [see
Fig. 2b)]. The relative weight of the second frequency
component suggests that it may come from muon sites
implanted near stacking fault planes, as such sites also
occur in a similar proportion. Our value for TN is consis-
tent with both susceptibility measurements on the same
batch, which indicated a clear anomaly (sharp downturn)
near TN as reported previously [6, 7], and the magnetic
Bragg peaks observed in resonant xray scattering [15].

The magnetic excitations were probed by powder in-
elastic neutron scattering using the direct-geometry time-
of-flight spectrometer MARI at ISIS with an optimised
setup to minimise absorption [16]. Fig. 3e) shows the
raw neutron scattering intensity as a function of wavevec-
tor (Q = |Q|) and energy transfer deep in the ordered
phase. An inelastic signal with a sinusoidal-like disper-
sive boundary below a maximum near 5 meV is clearly
observed at low Q. A gap, if present is smaller than 2
meV. The magnetic character of the scattering is con-
firmed by the broad, damped-out signal observed in the
paramagnetic phase at 55 K [see Fig. 3f) and g) (con-
trast filled and open symbols)]. Interestingly, the dis-
persion boundary extrapolates at the lowest energies to
a wavevector Q much smaller than that expected for
conventional Néel order, Q(020) = 1.34 Å−1, so this
magnetic order can be ruled out; in fact Q is close to
the expected location of the first magnetic Bragg peak
for both zig-zag or stripy order, Q(010) = 0.67 Å−1.
Figs. 3h) and i) show the calculated scattering from
spin waves of a 2D Heisenberg model with up to 3rd
neighbour exchanges, J1,2,3, with zig-zag (J1 = 4.17
meV, J2/J1 = 0.78, J3/J1 = 0.9) and stripy order
(J1 = 10.89 meV, J2/J1 = 0.26, J3/J1 = −0.2), respec-
tively (we neglect the interlayer couplings believed to be
small). The constraints to reproduce the dispersion max-
imum and the measured Curie-Weiss (CW) temperature
(Θ = −S(S + 1)(J1 + 2J2 + J3)/kB ∼ −125 K [7]) are
not sufficient to determine all 3 exchanges, so the values
chosen are representative of the level of agreement that
can be obtained [16]. The calculation for the zig-zag
phase [Fig. 3h)] can reproduce well the observed disper-
sion at low-Q (filled symbols), whereas the stripy phase
[Fig. 3i)] cannot account for the strong low-Q dispersive
signal and predicts stronger scattering at larger-Q’s not
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FIG. 3: (Color online) Diagram of a) Néel, b) zig-zag and c)
stripy order. d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering
at low Q (filled (magenta) symbols in h-j)), which we associate
with a sinusoidal spin wave dispersion; this becomes damped
out in the paramagnetic phase in f). Slanted thick dashed ar-
row shows the scan direction in g). Gray shading marks the
inaccessible region close to the elastic line dominated by inco-
herent elastic scattering. g) Energy scan (solid points 4.6 K,
open symbols 55 K) through the maximum spin-wave energy
seen in e) fitted to a Gaussian peak (solid line), dashed line is
estimated background. h-j) Calculated spherically-averaged
spin-wave intensity [16] for the J1,2,3 model with h) zig-zag
or i) stripy order, and j) the KH model with stripy order for
parameters given in the text. Solid red line in j) highlights
the low-energy boundary, which coincides with the dispersion
from Γ to the first softening point.

seen. Calculations for the KH Hamiltonian (1) are shown
in Fig. 3j) for α = 0.4 (lower limit for the stripy phase)
and J1 = 25.85 meV to reproduce the CW temperature
[21] Θ = −S(S + 1)(J1 − JK/3)/kB. The lower bound-
ary of the scattering at low Q (solid line) is predicted to
have a quadratic shape near the first softening point, a ro-

bust feature for any α throughout the stripy phase. This
is in contrast to the data where the dispersion bound-
ary (marked by filled symbols) has a distinctly different,
sinusoidal-like shape with a curvature the opposite way.
In addition, a different distribution of scattering weight
to higher energies is predicted, but not seen in the data.
We conclude that the KH model in the stripy phase has
a qualitatively different spin-wave spectrum compared to
the data. A minimal model that can reproduce the ob-
served low-Q dispersion and which predicts distribution
of magnetic scattering in broad overall agreement with
the data up to some intensity modulations is shown in
Fig. 3h) and requires substantial couplings up to 3rd
neighbors, which stabilize zig-zag magnetic order. Re-
cent theory [13] proposed that in addition to couplings
up to 3rd neighbors, a Kitaev term may also exist. We
have compared the data with such a model as well [16]
and estimate that a Kitaev term, if present, is smaller
than an upper bound corresponding to α . 0.40(5).

We note that sizeable J3’s are not uncommon in trian-
gular plane metal oxides. The reason is that even though
J1 involves two hoppings and J3 four, the two additional
hoppings are strong pdσ ones, and the hopping proceeds
through intermediate unoccupied eg states [22]. In case of
Na2IrO3 the hopping proceeds through somewhat higher
Na s orbitals, but these are very diffuse, and the corre-
sponding tspσ parameter is sizeable. Near cancellation
of the AFM and FM superexchange interaction for the
nearest-neighbor path further reduces J1 compared to J3.

To summarize, by combining single-crystal diffraction
and LDA calculations we proposed a revised crystal
structure for the spin-orbit coupled honeycomb antifer-
romagnet Na2IrO3 that highlights important departures
from the ideal case where the Kitaev exchange domi-
nates. We observed dispersive spin-wave excitations in
inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model
for the magnetic ground state that could support such a
dispersion relation.
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