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We show that spin S Heisenberg spin chains with an additional three-body interaction of the
form (Si−1 · Si)(Si · Si+1) + h.c. possess fully dimerized ground states if the ratio of the three-body
interaction to the bilinear one is equal to 1/(4S(S + 1)− 2). This result generalizes the Majumdar-
Ghosh point of the J1 − J2 chain, to which the present model reduces for S = 1/2. For S = 1, we
use the density matrix renormalization group method (DMRG) to show that the transition between
the Haldane and the dimerized phases is continuous with central charge c = 3/2. Finally, we show
that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard
model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.

PACS numbers: 75.10.Jm,75.10.Pq,75.40.Mg

Introduction – Over the years, exact results have
proved to be extremely useful in quantum and statis-
tical physics [1, 2]. In quantum magnetism, the Bethe
ansatz solution of the spin-1/2 Heisenberg chain [3] has
led to the first proof that the spectrum is gapless [4],
and its extensions, e.g., to the S = 1 chain with bilinear
and biquadratic interactions (BLBQ) with equal [5–7] or
opposite [8, 9] amplitudes has helped a lot to clarify the
physics of that model. In quantum frustrated magnetism
[10], cases where an exact expression for the ground state
wave function can be obtained have also played a very
important role. For instance, for the spin-1 Heisenberg
chain, the exact ground state of the AKLT point [11] has
been a milestone in the confirmation of Haldane’s predic-
tion that the spectrum of integer-S spin chains is gapped
[12]. For spin-1/2 magnets, the first example of a gapped
spectrum goes back to the Majumdar-Ghosh [13] (MG)
point J2/J1 = 1/2 of the J1 − J2 model defined by the
Hamiltonian

HJ1−J2 =
∑
i

(J1 Si · Si+1 + J2 Si · Si+2). (1)

At that point, the two fully dimerized states obtained as
products of singlets on consecutive dimers and defined by

|ψeven,odd〉 =
∏

i even,odd

|S(i, i+ 1)〉, (2)

where |S(i, i+1)〉 denotes the singlet formed by the spins
at sites i and i + 1, have been shown by Majumdar and
Ghosh to be exact ground states. Building on this result,
it has been shown that the spectrum is gapped, and that
this point is representative of an extended phase that cov-
ers the parameter range 0.2411 < J2/J1 < +∞ [14–16].
This seminal result has been at the origin of a long se-
ries of experimental investigations of frustrated spin-1/2
chains which started about 20 years ago with CuGeO3

and which remains a very active field of research [17].

Attempts at generalizing the MG point to come up
with a realistic model with fully dimerized states as ex-
act ground states for larger spins have failed so far. The
simplest idea is to consider the model of Eq. (1) for spins
S ≥ 1 [18]. It is easy to convince oneself that the dimer-
ized states of Eq. (2) remain exact eigenstates for any
spin when J2/J1 = 1/2, but for S ≥ 1, they are no longer
the ground state. The problem can be traced back to the
properties of a single triangle, into which the Hamilto-
nian of Eq. (1) can be decomposed for J2/J1 = 1/2: For
S = 1/2, the product of a singlet built out of two spins
times any state of the third spin is a ground state. For
S ≥ 1, the same state has a total spin S, and it is not
the ground state, which has total spin 0 or 1/2 for integer
and half-integer S respectively.

Following Klein [19], an interesting alternative consists
in building Hamiltonians as sums of local projectors on
three spins to ensure that the product of a singlet with
a single spin state is a local ground state. The simplest
Hamiltonian of that kind takes the form[20]

HKlein = −
∑
i

P i,i+1,i+2
Stot=S

(3)

where P i,i+1,i+2
Stot=S

is the projector on the subspace of total
spin S [33]. This projector can be written as

P i,i+1,i+2
Stot=S

=
∏
σ 6=S

(Si + Si+1 + Si+2)2 − σ(σ + 1)

S(S + 1)− σ(σ + 1)
, (4)

where the product runs from 0 or 1/2 for integer or half-
integer spins to 3S. For S = 1/2, this Hamiltonian re-
duces to the MG point of the J1 − J2 chain, but for
S ≥ 1, it is a polynomial in scalar products of pairs
of spins of degree 3S or 3S − 1/2 for integer or half-
integer spins, hence a very complicated Hamiltonian that
seems difficult to realize in actual systems. The same re-
mark applies to a spin-3/2 model recently investigated
by Rachel[21], whose ground states are partially dimer-
ized valence bond solid states, or to the generalizations
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proposed by Rachel and Greiter[22] that lead to exactly
trimerized resp. tetramerized ground states for S = 1
resp. S = 3/2 models.

In this Letter, we propose another generalization to
arbitrary S of the spin-1/2 J1 − J2 model defined by the
Hamiltonian

H =
∑
i

(J1 Si · Si+1 + J3 [(Si−1 · Si) (Si · Si+1) + h.c.])

(5)
with J1 > 0. The number of sites N is assumed to be
even, and we concentrate on periodic boundary condi-
tions [34]. As we shall see, this Hamiltonian possesses
for any value of S the equivalent of a MG point when
J3/J1 = 1/(4S(S+ 1)−2), at which the states of Eq. (2)
are exact ground states, and it is realistic in the sense
that it appears to next-to-leading order in the 1/U ex-
pansion of the two-band Hubbard model that leads to
the S = 1 Heisenberg model.

For S = 1/2, it is easy to check that the Hamiltonian
of Eq. (5) reduces to that of Eq. (1) with J2 = J3/2.
For S ≥ 1, the three-spin interaction does not reduce
to a next-nearest neighbor two-spin interaction, and the
proof that the states of Eq. (2) are exact eigenstates is
not a trivial extension of the MG proof.

As in the S = 1/2 case, let us first determine un-
der which condition the states of Eq. (2) might be exact
eigenstates of Eq. (5). To be specific, let us consider
|ψodd〉. For i odd, Si ·Si+1|ψodd〉 = −S(S + 1)|ψodd〉. By
contrast, for i even, the singlets on bonds (i − 1, i) and
(i+1, i+2) are affected by Si ·Si+1. However, the result-
ing wave function does not contain states with arbitrary
spin for the pairs (i − 1, i) and (i + 1, i + 2), but only
triplets. Indeed, for two spins S1 and S2, Sα1 |S(1, 2)〉
is a triplet for all spin components α = x, y, z. This is
clear for the z component since the SU(2) commutation
relations imply that

(S−1 + S−2 )2Sz1 |S(1, 2)〉 = 0,

(S+
1 + S+

2 )(S−1 + S−2 )Sz1 |S(1, 2)〉 = 2Sz1 |S(1, 2)〉,

and by rotational symmetry, this has to be true of the
other components as well. So, for i even, one can write

Si · Si+1|ψodd〉 =∑
σ,σ′

Cσ,σ′ |Tσ(i− 1, i)〉|Tσ′(i+ 1, i+ 2)〉
∏
j odd

′
|S(j, j + 1)〉

where the product over j is limited to j 6= i−1, i+1, and
where the indices σ, σ′ = 0,±1 keep track of the three
possible triplets of a pair of spins. Since the total wave-
function is a singlet, all coefficients must be equal to zero
except C1,−1, C−1,1 and C0,0, which must be related by
C1,−1 = C−1,1 = −C0,0. Their common absolute value
can be derived with the help of Clebsch-Gordan coeffi-
cients, but this is unimportant for our present purpose.

0 10 20 30 40 50 60 70 80 90
S(S + 1)

−40

0

40

80

120

E
/J

1

Figure 1: (Color online) Spectrum of the Hamiltonian Hi

[Eq. (7)] on three adjacent sites of the chain as a function of
S(S+1). The green line indicates the energy of the dimerized
eigenstate on this three site system, E = −S(S + 1)/2.

The only relevant fact is that, since only triplets are in-
volved, acting with Si−1·Si or Si+1·Si+2 on Si·Si+1|ψodd〉
will just multiply it by 1− S(S + 1). This leads to:

H|ψodd〉 = −J1N
2

S(S + 1)|ψodd〉

+(J1 − (4S(S + 1)− 2)J3)
∑
i even

Si · Si+1|ψodd〉 (6)

If J3/J1 = 1/(4S(S + 1) − 2), the second term drops,
and |ψodd〉 is an eigenstate of H with energy per site
−J1S(S + 1)/2. Since the Hamiltonian is translationally
invariant, this is also true for |ψeven〉.

To prove that these states are the ground states, let us
decompose the Hamiltonian as H = J1

∑
iHi with

Hi =
1

2
(Si−1 · Si + Si · Si+1)

+
1

4S(S + 1)− 2
[(Si−1 · Si) (Si · Si+1) + h.c.] .

(7)

The spectrum of this three-spin Hamiltonian can be
worked out analytically for S = 1 and numerically for
larger spin, with the result that the ground state energy
EGS(Hi) is equal to−S(S+1)/2 (see Fig. 1). By the vari-
ational principle, 〈H〉 ≥ J1

∑
iEGS(Hi) = −NJ1S(S +

1)/2, a lower bound saturated by |ψodd〉 and |ψeven〉. This
completes the proof that they are ground states of the
Hamiltonian of Eq. (5) when J3/J1 = 1/(4S(S + 1)− 2).

Finally, it is plausible that these are the only ground
states since the only ground states of Hi are the wave-
functions with a singlet |S(i−1, i)〉 or |S(i, i+1)〉, and the
only common eigenstates are given by |ψodd〉 and |ψeven〉.
However, a mathematically rigorous proof that these are
the only ground states for infinite systems would require
an analysis similar to that of Ref.[11] for the MG point
of the spin-1/2 J1 − J2 model.
Vicinity of the MG point for S = 1 – We now con-

centrate on the S = 1 model. At the Heisenberg point
J3 = 0, the system is in the Haldane phase, which is
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Figure 2: (Color online) Dimerization as a function of J3/J1

for different system sizes up to L = 250 sites in the vicinity of
the phase transition J3/J1 ≈ 0.11. The insets show the size
dependence at J3/J1 = 0.1, 0.111 and 0.12, respectively.

gapped but not dimerized. Therefore, a phase transition
has to appear between the MG point J3/J1 = 1/6 and
the Heisenberg point. Let us investigate the nature of
this transition numerically using the DMRG [23, 24].

The natural order parameter of this transition is the
dimerization operator defined by d = |〈Si · Si+1 − Si ·
Si−1〉| where (i, i + 1) is the central bond. Results for
sizes up to 250 sites[35] are shown in Fig. 2. At the MG
point, d is exactly equal to 2 for all sizes. The dimeriza-
tion develops around J3/J1 = 0.11 in a way typical of a
continuous transition. Assuming this to be the case, we
have performed a finite-size scaling in the vicinity of the
critical point, and we have identified the point where the
dimerization decays to zero algebraically. This occurs at
J3/J1 = 0.111(1) (middle panel of the inset of Fig. 2).

This is further corroborated by our results for the cor-
relation length, which we have obtained by fitting the ex-
ponential decay of the spin-spin correlation function with
x−1/2 exp (−x/ξ). The results up to 250 sites shown in
Fig. 3 are consistent with a divergence at J3/J1 ≈ 0.11.
At the MG point, the correlation vanishes rigorously for
all sizes. Together with the results for the dimerization,
we therefore conclude that the transition is located at
J3/J1 ≈ 0.111. In the Supplemental Material, we also
report on a scaling analysis of the fidelity susceptibility
[25] that agrees with this estimate.

Let us now try to further characterize the universality
class of this phase transition. To this end, we have com-
puted the central charge c from the block entropy of the
system, S` = −Tr%` ln %`, with %` the reduced density
matrix of a subsystem of size `. For a gapless system,

S` =
c

3
ln

[
L

π
sin

(
π`

L

)]
+ gPBC, (8)

in the presence of periodic boundary conditions, so that
the central charge c is obtained by fitting the numeri-
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Figure 3: (Color online) Correlation length as a function of
J3/J1 for different system sizes. Inset: spin and quadrupolar
correlation functions of Eqs. (9) at the critical point J3/J1 =
0.111.

cal results to Eq. (8) [26]. Results for 50, 80 and 100
sites[36] are shown in Fig. 4. They point rather convinc-
ingly to c = 3/2. This suggests that the transition might
be in the SU(2)k=2 WZWN universality class [27], as
the Takhtajan-Babujian (TB) point of the S = 1 BLBQ
chain, at which a transition from a gapped Haldane phase
to a gapped dimerized phase takes place[8, 9].

To further test this conclusion, we have attempted to
determine the scaling dimensions at the critical point
which determine the exponents of the algebraic decay of
the spin and quadrupolar correlation functions [28, 29]

CS(i, j) ≡ 〈Szi Szj 〉 ∼ (−1)i−j (i− j)− 1
4−π/(2α

2) , (9)

CQ(i, j) ≡ 〈1
2

(
S+
i

)2 (
S−j
)2

+ h.c.〉 ∼ (i− j)−2π/α2

.

For the SU(2)k=2 WZWN transition, α =
√
π, i.e., the

correlation functions decay with exponents 3/4 and 2,
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Figure 4: (Color online) Fit of the Calabrese and Cardy for-
mula [Eq. (8), continuous line] to the DMRG results (dots)
for the block entropy at J3/J1 = 0.111.
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Figure 5: Phase diagram of the J1 − J3 chain of Eq. (5) for
S = 1.

respectively. A fit to the DMRG data at J3/J1 = 0.111
leads to exponents 0.72 and 1.83 for the corresponding
correlation functions (see inset of Fig. 3), in reasonable
agreement with the field theory prediction. Furthermore,
the finite-size scaling of the correlation length at the crit-
ical point is linear to a very good accuracy, which indi-
cates that ν = 1. Finally, at the critical point we find
d ∝ L−0.47, implying β/ν ' 0.47, hence β ' 0.47 since
ν = 1. In a related model, Nersesyan and Tsvelik [30]
have predicted that the dimerization order parameter can
be described as the product of four Ising fields. Three of
them are ordered in the dimerized phase, one is disor-
dered, and they are all critical at the transition point.
Since the Ising exponent β is equal to 1/8, we expect the
product of four critical Ising fields to scale with exponent
β = 1/2. Again, the numerical estimate is in reasonable
agreement with this prediction [37].

We therefore safely conclude that the MG point is rep-
resentative of an extended phase which is separated from
the Haldane phase by a continuous phase transition at
J3/J1 ' 0.111, and which extends to large values of J3,
as in the S = 1/2 case [16]. The results are summarized
in the phase diagram of Fig. 5.

Discussion – Finally, let us discuss the implications
of the present results for actual spin chains. For simplic-
ity, we concentrate on spin-1 chains.[38] Starting from a
two-orbital Hubbard model with repulsion U and Hund’s
rule coupling, a strong coupling expansion leads, to sec-
ond order in the hopping integrals, to the S = 1 Heisen-
berg model with bilinear coupling J1 . At fourth order,
three extra terms appear: the three-body interaction J3
of Eq. (5), a next-nearest neighbor bilinear coupling J2,
as in Eq. (1), and a biquadratic interaction Jbiq(Si·Si+1)2

(see Supplementary Material). The nature of the phase
induced by these terms will depend on the microscopic
parameters, but a reasonable case in favor of a spon-
taneous dimerization in a realistic parameter range can
be articulated around four points: 1) the J3 coupling
generated by the fourth order perturbation theory is es-
sentially always positive; 2) the critical ratio for dimer-
ization J3/J1 = 0.111 is quite small and can be reached
for reasonable values of U ; 3) the biquadratic interaction
may be positive or negative. If it is negative, it favors
dimerization. If it is positive, it is typically of the same
order as J3, and preliminary results show that it should
be significantly larger than J3 to suppress dimerization;
4) to fourth-order, the next-nearest neighbor interaction

is essentially ferromagnetic, and this would compete with
dimerization. However, in actual antiferromagnets, it is
in fact more likely to be antiferromagnetic due to residual
direct superexchange, hence to be compatible with dimer-
ization. So, we believe that the dimerization mechanism
described by the model of Eq. (5) is a realistic potential
source of dimerization in actual antiferromagnetic spin
chains. We also note that for systems of ultracold alka-
line earth atoms on optical lattices, higher order pertur-
bation theory leads to the three-body term of Eq. (5) as
well [31, 32]. In actual systems, this dimerization should
be observable provided the interchain coupling and the
temperature are both smaller than an energy scale of the
order of the gap, a reasonable condition since the gap
at the Majumdar-Ghosh point is expected to be a sig-
nificant fraction of J1 (see Supplementary Material for a
detailed discussion).

Conclusions – We have shown that it is possible to
generalize the spin-1/2 J1 − J2 model to larger spins in
such a way that a Majumdar-Ghosh point where dimer-
ized states are exact ground states is still present without
making the model unrealistically complicated. For spin
1, the additional interaction is a three-site term that ap-
pears naturally at fourth order in a 1/U expansion of a
two-band Hubbard model, and we have also shown that
the MG point is representative of an extended dimerized
phase separated from the Haldane phase by a continuous
transition in the SU(2)k=2 WZWN universality class. We
hope that this new model will motivate the search for
experimental realizations in quantum magnets and cold
atoms.
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