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We apply the density matrix renormalization group (DMRG) to study the phase diagram of
the infinite U Hubbard model on 2 to 6-leg ladders. Where the results are largely insensitive to
the ladder width, we consider the results representative of the 2D square lattice. We find a fully
polarized ferromagnetic Fermi liquid phase when n, the density of electrons per site, is in the range
1 > n & 0.800. For n = 3/4 we find an unexpected insulating “checkerboard” phase with coexisting
bond density order with 4 sites per unit cell and block spin antiferromagnetic order with 8 sites per
unit cell. For 3/4 > n, all ladders with width > 2 have unpolarized ground states.

The Hubbard model is the paradigmatic representa-
tion of strongly correlated electron systems[1]. It was
introduced to explain ferromagnetism in transition met-
als [2, 3], and, since then, has been studied as a model
of antiferromagnetism, unconventional superconductiv-
ity, cold atoms in optical lattices, and exotic fraction-
alized phases of quantum matter. In the U → ∞ limit
(in units in which the hopping t = 1) there are no pa-
rameters other than n, the electron density per site. De-
spite the apparent simplicity of this limit, relatively little
is known about its phase diagram. Nagaoka’s theorem
[4] states that for a finite size system with one doped
hole away from half filling (n = 1), the ground state is
fully spin-polarized. However, it has been controvertial
whether this state survives a finite range of hole con-
centrations in the thermodynamic limit. Previous exact
diagonalization[5], Monte Carlo[6], and variational[7–9]
studies suggest that the fully polarized or “half metallic
ferrmagnetic” (HMF) state persists over a finite range of
densities, 1 > n > nF with nF < 1. In contrast, other
lines of analysis[10–13] were suggestive that nF → 1−.

In this paper we report the results of an extensive
DMRG study of the zero temperature (T = 0) phase
diagram of the Hubbard model in the U → ∞ limit, as a
function of n, the density of electrons per site. To begin
with, we study the two-leg ladder on systems of size up
to 2 × 50 (typical truncation error 10−8 ∼ 10−13), large
enough that finite size scaling can be used to obtain clear
convergence to the thermodynamic limit. The resulting
phase diagram is shown in the lower panel of Fig. 1. To
get a feeling for which features of the 2-leg Hubbard lad-
der extrapolate smoothly to 2D, we compute the proper-
ties of 4-leg and 6-leg ladders (with sizes up to 4×20 and
6× 16, with corresponding truncation errors ∼ 10−6 and
10−4 respectively). The inferred partial phase diagrams
of these wider ladders are shown in the two middle pan-
els of Fig.1. (We have also carried out limited additional
studies of 3- and 5-leg ladders.) While there may be sub-
tle correlations characteristic of the 2D model that would
only be manifest were we able to study wider or longer

ladders, many features of the phase diagram are already
remarkably insensitive to ladder width and length for the
studied system sizes. We therefore speculate that these
features survive as ground state phases of the fully 2D
model, as shown in the upper panel of Fig. 1.

To summarize our main findings: 1) For 1 > n > nF ,
we find a HMF phase, i.e. a fully spin polarized Fermi liq-
uid. For all even leg ladders we have studied nF = 0.800,
so we expect that in 2D, nF ≈ 0.800 as well, in agreement
with recent variational studies[8]. 2) For nF > n > 3/4,
the 2-leg ladder appears to phase separate (PS), with
the two coexisting phases having densities n = nF and
n = 3/4. Our more limited results on broader ladders
suggest that the same holds true for 4-leg ladders and,
by extension, in 2D as well[19]. 3) For n = 3/4, the 2-leg
ladder forms an insulating commensurate plaquette den-
sity wave state, as shown schematically in Fig. 2(a). This
pattern of symmetry breaking suggests that the spin-
degrees of freedom on “strong” 3/2-spin plaquettes are
coupled antiferromagnetically through “weak” bonds; in-
deed there is no detectable spin gap and we find clear sig-
natures of quasi-long-range antiferromagnetic order with
twice the period of the plaquette order. The 4-leg and
6-leg ladders exhibit a similar (slightly weaker) order-
ing tendency, forming the checkerboard plaquette order
of the sort shown in Figs. 2(b) and (c); given the re-
sults on 2-, 4-, and 6-leg ladders we suggest that the
corresponding phase persists in the 2D limit. The 2D
“checkerboard” phase has coexisting bond-density wave
and block-spin antiferromagnetic order. However, the
site-charge density in this phase is uniform. The ex-
istence of this phase, and its apparent robustness, was
unanticipated in previous studies as far as we know.[20]
4) For n < 3/4, the ground state of the 2-leg ladder ex-
hibits ferromagnetic or paramagnetic phases depending
on n. However, the ground state is always paramagnetic
for the 4- and 6-leg ladders, which indicates a paramag-
netic ground state in 2D.

DMRG applied to Hubbard ladders: The Hubbard
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model is defined, as usual, by

H = −t
∑

〈ij〉,σ=↑,↓

[

c†iσcjσ +H.c.
]

+ U
∑

i

c†i↑ci↑c
†
i↓ci↓, (1)

where c†jσ creates an electron with spin polarization σ
on site j and 〈ij〉 signifies pairs of nearest-neighbor sites.
In the limit U → ∞, the Hamiltonian is parameter-free;
the second term in H is replaced by the non-holonomic
constraint of no double-occupancy,

∑

σ c
†
jσcjσ = 0, or 1,

and we take units of energy so that t = 1.
The DMRG calculations were carried out keeping

4,000∼18,000 states. All ladders were taken to have open
boundary conditions in both directions. When we com-
pute the expectation value of various densities, it is some-
times useful to break spin rotational symmetry by apply-
ing a Zeeman field of magnitude h = 1 in the z direction
on the single site at the lower left-hand end of the ladder.
To characterize the excitation spectrum of the system,

we define the charge, spin, and single-particle gaps, ∆c,
∆s, and ∆1p, as follows:

∆c ≡ [E(Nel + 2) + E(Nel − 2)− 2E(Nel)]/2 (2)

∆s ≡ [E(S = 1;Nel)− E(S = 0;Nel)]

∆1p ≡ [E(Nel + 1) + E(Nel − 1)− 2E(Nel)]

where Nel is the total number of electrons (which is often
taken, for present purposes, to be even), and E(Nel) and
E(S,Nel) are, respectively, the ground-state energy and
the ground-state energy in a given spin-sector. This defi-
nition of the spin-gap is only useful under circumstances
in which the ground state has S = 0. Where possible, we
have extrapolated values of the gaps to the thermody-
namic limit by fitting the data from finite length ladders
to a quadratic form, ∆(N) = ∆+AN−1+BN−2, where
N is the length of the ladders.
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FIG. 1: The phase diagrams of the infinite U Hubbard model
on the 2-, 4-, and 6-leg ladders, and the inferred phase dia-
gram in 2D.

Results for the 2-leg ladder: We have computed
the ground state properties of the 2-leg ladder as a func-
tion of n for system sizes 2 × N with N = 20, 30, 40, and
50. To identify the ferromagnetic portions of the phase
diagram, we have computed the ground-state magneti-
zation density M = S/Smax, where S is the total spin
of the ground state, and Smax = Nn is the maximum
possible value of S in a fully spin-polarized state. The
results are shown in Fig. 3 (a), where different colors
denote the different system sizes(See Supplementary Ma-
terial for part of the raw data including error bar). Since
the four curves are nearly identical, the extrapolation to
the thermodynamic limit is trivial. Specifically:

1)The fully polarized ground state terminates at n =
nF = 4/5, independent ofN [21](See Supplementary Ma-
terial for supporing raw data). This value of nF is not
locked by any obvious commensurability effect that we
have detected. For instance, if we modify the Hamil-
tonian by making the hopping matrix elements on the
rungs t′ = 0.5t, where t is the hopping matrix element
on the legs of the ladder, we find that nF = 0.85. How-
ever nF = 4/5 is robust when t′ is increased, at least up
to t′ = 2t.

2) The ground state at n = 3/4 is an insulating para-
magnetic state with a charge gap, ∆c = 0.24 ± 0.02t, a
single-particle gap, ∆1p = 0.245 ± 0.02t, but a vanish-
ing spin-gap ∆s < 3 × 10−4t which is zero within our
uncertainty. (See Supplementary Material for raw data
used for extrapolation.) The character of this state on a
central segment of the ladder is shown in Fig. 2(a). The
thickness of the lines on the bonds between sites repre-
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FIG. 2: Ground-state correlations at n = 3/4 for a central
portion of (a) the 2 × 20 ladder, (b) the 4 × 20 ladder, (c)
the 6 × 8 ladder. The thickness of the lines is proportional
to the third power of the magnitude of Bij ,and the length
of the arrows to the magnitude of Sj , where the axis of spin-
quantization is set by a Zeeman field of strength h = 1 applied
to the lower left-hand site of each ladder. The numbers index
the position along the ladder. For the 2 × 20 ladder, the
values of Bij in the figure range from Bij = 0.30 (lightest
line) to Bij = 0.45 (darkest line), while the magnitude of Sj

ranges from -0.19 to 0.21. For the 4 × 20 ladder Bij ranges
from 0.30 to 0.41, while Sj ranges from -0.12 to 0.12. For the 6
× 8 ladder Bij ranges from Bij = 0.31 to 0.41, while Sj ranges
from -0.18 to 0.16. (We have obtained similar results for a 6
× 16 ladder, but even keeping 18000 states, the convergence
is not as complete as for the smaller ladders.)
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sents the magnitude of the expectation value of the bond-

density,Bij ≡
∑

σ

〈[

c†iσcjσ + h.c.
]〉

and the length of the

arrow on the site represents the expectation value of the

spin on that site, Sj ≡
1
2

∑

σ σ
〈

c†jσcjσ

〉

. A Zeeman field

of strength 1 has been applied to the first site on the lower
leg of the ladder; translation symmetry is broken as well
by the ends of the ladder. There is a period-2 bond-
density wave, with a magnitude that does not decrease
with distance from the end of the ladder, nor does it
depend significantly on the length of the ladder; this sig-
nifies a discrete, broken translation symmetry. There is
also a period-4 ordering tendency of the spin density, but
with an intensity which decays slowly with distance from
the end at which the Zeeman field is applied. This, and
the absence of a spin-gap, signifies that there is quasi-long
range antiferromagnetic order. The expectation value of

the electron density, nj ≡
∑

σ

〈

c†jσcj,σ

〉

, is nearly uni-

form, nj ≈ n for all j except in the immediate vicinity
of the ends of the ladder. To summarize, at n = 3/4 the
system forms a “plaquette density wave”, which can be
visualized as a checkerboard array of weakly coupled pla-
quettes, each with three electrons in a state of total spin
3/2, and a weak, antiferromangetic exchange coupling
between plaquettes. As one would expect, the charac-
ter of this state is not sensitive to small changes in the
Hamiltonian – for instance, if we set the rung hopping
t′ = 0.5t or 2t, we find no qualitative change in the insu-
lating phase at n = 3/4.

3) When n is in the range 4/5 > n > 3/4 the ground
state appears to be a 2-phase mixture of the fully polar-
ized state with n = 4/5 and the checkerboard state with
n = 3/4. The evidence for this is as follows: a) As seen
in Fig. 3 (a), the ground state magnetization is (within
expected finite size corrections) a linear function of n in
this range. b) The ground state energy (not shown) is, to
similar accuracy, a linear function of n in this range, with

FIG. 3: (a) Magnetization, normalized to its maximum pos-
sible value, of the 2-leg ladder as a function of n.The black,
green, blue, and red curves correspond to N=50, 40, 30, and
20. (b) Expectation value of the site density, nj , in a 2 × 50
ladder with average density n = 0.77 and a chemical potential
of magnitude µ = 0.3t applied to the left-most 2 × 20 sites.

a continuous first derivative at n = nF ; this is precisely
the behavior expected from a Maxwell construction for a
two-phase region. c) As a final test, we have applied an
on-site potential of magnitude µ = 0.3t to the left-most
2×20 lattice sites of a 2×50 ladder with mean value of
n = 0.77; as can be seen in Fig. 3 (b), the resulting
density profile consists of a region with density nj ≈ 4/5
on the left portion, and nj ≈ 3/4 on the right portion of
the ladder, with a sharp domain wall separating them.
We’ve also computed spin correlation function for direct
evidence. However the expected two peaks are broad-
ened due to numerical uncertainty (See Supplementary
Material for results).
4) Again from Fig. 3 (a), it is apparent that for 3/4 >

n > 3/5, there is a regime in which the ground-state is
partially spin-polarized, with maximal spin-polarization
being attained at n = 2/3 where M ≈ 0.5. The behavior
of the 2-leg ladder in this regime is interesting in its own
right, but, in contrast to the situation in other ranges of
n, similar behavior is not seen in wider ladders.
5) For 3/5 > n, the ground state has M = 0. Finite

size scaling leads to the speculation that, for n 6= 1/2,
this is a Luttinger liquid (LL) phase with ∆c, ∆s and
∆1p all tending to 0 in the thermodynamic limit to within
our numerical uncertainty of ∼ 0.02t (Clearly, in a Fermi
liquid (FL), all three gaps vanish in the thermodynamic
limit. In 1D, the FL is unstable in the presence of any
interactions, but there exists a stable gapless LL.)
6) For n = 1/2 there is a clearly identifiable charge gap,

∆c ∼ 0.1t. One can think of this as arising from a state in
which there is a single electron localized on each rung of
the ladder,[22] so that the spin-degrees of freedom form
an effective spin-1/2 chain, and thus can be expected
to exhibit one of two possible phases – a gapless phase
with power law antiferromagnetic and dimerization cor-
relations or a long-range ordered dimerized phase with
a spin-gap. In a forthcoming paper we find slowly de-
caying dimerization and antiferromagnetic correlations,
which are suggestive of the undimerized phase.
Results for wider ladders and extension to 2D:

Wider ladders provide necessary clues concerning the
evolution of the phase diagram as the 2D limit is ap-
proached. However, with increasing width, it becomes
more difficult to obtain fully converged results from
DMRG, thus we use increasingly shorter ladders as the
width increases.
To study the evolution of the HMF phase, we have

computed nF , the largest value of n for which the ground
state is fully spin polarized, for a variety of ladders (See
Supplementary Material for results). An even - odd effect
is apparent. For the 3 × N ladders nF = 0.87, indepen-
dent of N , while for 4×N (as for 2×N ) nF = 0.8. For 5-
and 6-leg ladders, we were restricted to relatively small
N , but the trend continues, with nF slightly greater than
0.8 for the 5-leg and approximately equal to 0.8 for the 6
leg. Extrapolating either the even or the odd leg ladder
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results to the 2D limit results in an estimate of nF ≈ 0.8
as the ladder width tends to infinity.
We exhibit in Fig. 2(b) and 2(c), respectively, the

ground-state correlations at n = 3/4 of the longest acces-
sible 4- and 6-leg ladders. The analogous commensurate
checkerboard state we found in the 2-leg ladder is mani-
fest in these correlations, as well. Indeed, the magnitude
of the broken symmetry does not seem to decrease much
with increasing ladder width - see figure caption.
For the 4×20 ladder with n = 3/4, ∆c = 0.23± 0.006t

and ∆s = 0.008 ± 0.002t. For comparison, on the
2×20 ladder, the charge gap is of comparable magni-
tude, ∆c = 0.286 ± 0.006t, but the spin-gap is more
than a factor of 20 smaller, ∆s < 0.0003t. The robust-
ness of the charge gap corroborates the existence of a
commensurate insulating checkerboard state. To the ex-
tent that we can think of the low energy spin degrees of
freedom as corresponding to a spin 3/2 antiferromagnet
defined on the checkerboard lattice, all (4p + 2)-leg and
4p-leg ladders correspond, respectively, to (2p + 1)-leg
and 2p-leg spin 3/2 Heisenberg ladders, and accordingly
are expected to be gapless, or to exhibit a spin-gap, al-
beit one which falls exponentially with increasing n [16].
Together, these observations strongly support the conclu-
sion that the checkerboard antiferromagnet is the ground
state phase in the 2D limit.
For nF > n > 3/4, we have not yet carried out serious

calculations to test for phase separation. However, the
apparent existence of partial polarization and the robust-
ness of the plaquette phase at nF = 3/4 suggests that,
as for the 2-leg ladder, phase separation is likely for the
4- and 6-leg ladders, and by extension, in the 2D limit.
Finally we have found that the groundstates of all the

4-leg ladders we have investigated have total spin ≤ 2 for
3/4 > n > 3/5 and total spin ≤ 1 for 3/5 > n respec-
tively, corresponding to M ≈ 0. In the near future we
also hope to study the apparent LL phase to determine
whether there is a well defined strong coupling limit[18]
of the superconducting state that is known to arise at
weak coupling [17].
Conclusion: Our extensive DMRG study of the U →

∞ limit Hubbard model on the 2-, 4-, and 6-legs ladders
strongly indicates that in the 2D thermodynamic limit
the ground state is a fully spin polarized Fermi liquid
for a finite range 1 < n < nF with nF ≈ 0.8. Also
unexpectedly, entrance into the paramagnetic phase for
n > 3/4 is marked by a commensurate “checkerboard”
phase at n = 3/4 of substantial robustness. While we
have not yet investigated the effects of non-zero t/U , we
expect the HMF to be stable so long as 1 − α

√

t/U >
n > nF , where α is a number of order 1.[23]
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