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In this letter, we report the observation of the correlation between two modes of microwave

radiation resulting from the amplification of quantum noise by the Josephson Parametric Converter.

This process, seen from the pump, can be viewed as parametric down-conversion. The correlation

is measured by an interference experiment displaying a contrast better than 99% with a number

of photons per mode greater than two hundred and fifty thousand. Dispersive measurements of

mesoscopic systems and quantum encryption can benefit from this development.

In quantum physics, the no-cloning theorem [1, 2] forbids taking an unknown, but pure, quantum state and

preparing an identical copy of that state while leaving the original intact. Allowing the original to be destroyed as

the copy is produced leads to the process called quantum teleportation [3]. An attempt at multiple cloning of a

superposition of states can only lead to a single superposition of clone products of the original states. Parametric

down conversion is the simplest example of this by-pass of the no-cloning theorem [4]. It is performed by letting the

quantum noise of two signal channels enter the two input ports of a non-degenerate parametric amplifier. The two

signals appearing at the output ports of the amplifier are strongly correlated for finite amplifier gain and become

identical in the limit of infinite gain. From the point of view of the pump signal powering the amplifier, each of

its photon is split by the non-linear component of the parametric amplifier into twin photons, which differ only

in frequency and exit in separate channels. When measuring the photons by two ideal detectors, one would find

rigorously the same number in both channels, even though, taken separately, each channel displays a Boltzmann

statistics for the number of photons, as if it was a spectral component of a thermal source. The peculiar correlation

of the two channels, often referred as two-mode squeezing [4, 5], can be applied to quantum metrology measurements

[6, 7], quantum cryptography protocols [8] and quantum teleportation [9, 10]. So far, two-mode squeezing operation

has been demonstrated in quantum optics [11] and in BECs experiments [12]. In this letter, we report the observation
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of the correlation between two modes of microwave radiation resulting from the amplification of quantum noise by

the Josephson Parametric Converter [13, 14]. Our work is motivated by the present interest in quantum information

processing at microwave frequencies by superconducting integrated circuits [15–18].

Before presenting our experimental results, let us describe the properties of parametric down conversion in the

quadrature representation, which is appropriate to ultra-low noise measurements of microwave signals in the quantum

regime. Non-degenerate parametric amplifiers involve two distinct internal resonant modes A and B, whose frequencies

fa and fb differs by at least the sum of the bandwidth of the two resonances. This is in contrast with degenerate para-

metric amplifiers, which operate with only one internal resonant mode and thus cannot produce two-mode squeezing.

The non-degenerate amplifier is characterized by the input-output relations [13]

âout = [coshλ]âin + [sinhλ]b̂†in (1)

b̂out = [coshλ]b̂in + [sinhλ]â†in (2)

where â (â†) and b̂ (b̂†) denote the annihilation (creation) operators of the corresponding modes satisfying the

commutation relation [â,â†]=[b̂,b̂†]=1, and where λ is the squeezing parameter. The factors cosh(λ) and sinh(λ) play

the role of the return and through gain for the amplifier, respectively. They increase monotonously with pump power

until the threshold for parametric self-oscillation is reached. Squeezing and anti-squeezing correlations appear on the

linear combinations

âout − b̂†out√
2

= e−λ
âin − b̂†in√

2
(3)

âout + b̂†out√
2

= eλ
âin + b̂†in√

2
(4)

Consequently, when the input is in the vacuum state, at the output the quadrature component Xout
a = (âout +

â†out)/
√

2 and Xout
b = (b̂out + b̂†out)/

√
2 are quantum correlated while P out

a = −i(âout− â†out)/
√

2 and P out
b = −i(b̂out−

b̂†out)/
√

2 are quantum anti-correlated. In other words, the variances (Xout
a −Xout

b )2 = e−2λ(X in
a −X in

b )2 and (P out
a +

P out
b )2 = e−2λ(P in

a +P in
b )2 are both smaller than the quantum noise. On the other hand, the variances (Xout

a +Xout
b )2 =

e2λ(X in
a + X in

b )2 and (P out
a − P out

b )2 = e2λ(P in
a − P in

b )2 are larger than twice that of amplified quantum noise. The
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FIG. 1: Marginal distributions of the Wigner function at the input and output of a non- degenerate parametric amplifier

represented in different quadratures. In this example λ=0.8

output state |Ψout〉 is obtained by applying the unitary squeezing operator on the vacuum states of modes A and B

[19]

|Ψout〉 = eλâ
†b̂†−λâb̂|0〉a|0〉b

=
1√

1 + 〈n〉

∞∑
n=0

(
〈n〉

1 + 〈n〉

)n
2

|n〉a|n〉b (5)

where 〈n〉 = sinh2 λ denotes the mean photon number in each of the modes at the output. This expression shows

that the output state |Ψout〉 is an entangled state in which the modes A and B contain the exact same number of

photons. More directly linked to our experiment is the two-mode Wigner function associated with |Ψout〉 [19].
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W (X in
a , X

in
b , P

in
a , P

in
b ) =

1

π2
exp

[
e2λ
((X in

a +X in
b√

2

)2

+
(P in

a − P in
b√

2

)2)
+ e−2λ

((X in
a −X in

b√
2

)2

+
(P in

a + P in
b√

2

)2)]
(6)

In figure 1, we compare the marginal distributions of the Wigner function at the input and output of the amplifier for

different quadratures. As seen in fig 1a,b, each mode taken separately is transformed into the thermal state as shown

by the reduced density operators

ρa(b) = Trb(a)|Ψout〉〈Ψout|

=
1

1 + 〈n〉

∞∑
n=0

( 〈n〉
1 + 〈n〉

)n
|n〉a(b)a(b)〈n| (7)

However, the squeezing and anti-squeezing are displayed in the joint quadrature components, as shown in fig 1c,d.

The entanglement performed by the amplifier can be revealed by measuring the average intensity of an interference

signal ĉ obtained by superposing the output of one mode, say A, with the frequency shifted image of the output of

the other mode, say B,

ĉ = âout + eiφb̂†out (8)

Here, φ is a phase shift applied to the pump signal at frequency fp = fa + fb, used in mixing the frequency fb of

the output of mode B, down to fa. As φ is varied from 0 to 2π, the average intensity 〈ĉ†ĉ〉 will exhibit a sinusoidal

interference oscillation, whose minimal value is proportional to the variances of the squeezed quantities Xout
a −Xout

b

and P out
a +P out

b , and whose maximal value is proportional to the variances of the anti-squeezed quantities Xout
a +Xout

b

and P out
a − P out

b . This experiment thus accesses directly the variances of the marginal distribution of the Wigner

function of fig 1.

Our non-degenerate parametric amplifier, named Josephson Parametric Converter (JPC) (shown outlined in red

in Fig 2) has been described in details in references [13, 14]. Its operation is based on the Josephson ring modulator,

consisting of four nominally identical Josephson junctions forming a superconducting loop threaded by a magnetic

flux Φ. Two superconducting resonators, defining the modes A and B, couple to the differential modes of the ring

while being accessed by two external transmission lines. An additional transmission line carries the pump signal at

frequency fp, and is weakly coupled to the common mode of the ring through a network of capacitors [14]. The full

description and fabrication details of our JPC sample are given in the Supplementary Information section as well
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FIG. 2: The Josephson Parametric Converter (red solid line box) and its microwave measurement set-up. Port 1 is connected to

a 50 Ω mesoscopic noise source whose effective temperature is controlled by a dc current source [14], and port 2 is connected to

a 50 Ω load. The output signals are first amplified by HEMT cryogenic amplifiers at the 4.2K stage. A combination of isolators

placed at different temperature stages are used to minimize the backaction of the amplifier on the JPC. At room temperature,

the signal at fb is down converted to fa using a mixer, whose LO port is driven by the phase shifted (φ) pump signal. Both

signals are further amplified such that the total gains of the two amplification chains are identical, before being superposed by

a combiner whose output is sent to a spectrum analyzer.

as the electrical characteristics of our device at microwave frequencies. In contrast with previous squeezing work

involving degenerate Josephson parametric amplifiers, we have here a complete separation of the signal and idler

modes both spatially and temporally [20–24]. The JPC operates as a phase-preserving amplifier described by the

characteristic input-output relations (1) and (2) where coshλ = (1 + ρ2)/(1 − ρ2) and sinhλ = 2ρ/(1 − ρ2), ρ being

the reduced pump current. The full expresion of the return and through gain as function of input frequencies f1 and

f2 can be found in supplementary information [14].

Our experimental set-up is described in figure 2. The two input ports of the JPC are connected to two 50 Ω loads

anchored at the base temperature T0=17 mK of a dilution refrigerator. Given the frequencies fa=1.6286 GHz and

fb=7.1694 GHz, and assuming thermal equilibrium in the loads, each port is in principle fed at its input with the

zero point motion of quantum noise, corresponding to an energy per mode of h̄ω
2 . At the output of the JPC, the two

output lines carry noise of complex amplitude âout and b̂out and frequencies fa and fb. These signals are amplified
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FIG. 3: a) I(λ, φ) in color scale as a function of the noise frequency f1 at port1 and the phase shift φ taken for a value of the

gain of 51 dB. b) Cuts of I(λ, φ) corresponding to the constructive (maximum) and destructive (minimum) interference. c)

I(λ, φ) integrated in its -3dB bandwith as a function of φ, expressed in photon units referred to the output of the amplifier

for three different values of gain. Open dots corresponds to experimental data, full lines to the theoretical expression (10) and

dashed lines to the theoretical expression (10) without the noised added by the chain amplifiers. For each gain value we also

indicate the number of photons corresponding to the incoherent sum of the two channels (dots lines). d) Oscillations of the

intensity of I(λ, φ) in a linear scale, integrated in 200 KHz band around fa showing a total contrast of the interference pattern.

Dots corresponds to experimental data and the black line to a sinusoidal fit

by a combination of cryogenic and room temperature amplifiers and become ga(âout + ân) and gb(b̂out + b̂n) where ân

and b̂n are the complex amplitudes of the noise added by the amplifiers and ga(b) are the gain of the amplifier chains.

Then the signal at fb is mixed with a signal at fp, phase locked with the pump, producing a signal g′b(e
iφb̂†out + b̂′n),

where φ is the phase shift between the LO port of the mixer and the pump. Note that the conjugation of b̂ into b̂† in

this operation, a crucial feature, is due to the fact that fp is greater than fb, and that we are collecting the signal at
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fp − fb and not the signal at fp + fb. The gains of the two chains have been adjusted to achieve the interferometer

balance condition (g′b = ga) by tuning room amplifier gains and variable attenuation on each chain separately. The

signals of the two channels are then superposed in a combiner whose output – the sum ga√
2
(âout + âN + eiφb̂†out + b̂′N )

– is sent to a spectrum analyzer, therefore performing the measurement of

I(λ, φ) =
g2
a

2

〈{
(âout + âN + eiφb̂†out + b̂′N ), (â†out + â†N + e−iφb̂out + b̂′†N )

}〉
(9)

where {A,B} = AB +BA.

According to relations (1) and (2), the previous expression transforms into

I(λ, φ) = g2a

[〈
(X in

a +X in
b )2 + (P in

a − P in
b )2

〉
e2λ cos2

φ

2
+
〈
(X in

a −X in
b )2 + (P in

a +X in
b )2

〉
e−2λ sin2 φ

2
+

1

2
〈{âN , â†N}〉+

1

2
〈{b̂′†N , b̂

′
N}〉

]
= g2a

[
e2λ cos2

φ

2
+ e−2λ sin2 φ

2
+

1

2
〈{âN , â†N}〉+

1

2
〈{b̂′†N , b̂

′
N}〉

]
(10)

Thus, I(λ, φ) displays two interference terms e2λ cos2 φ/2 and e−2λ sin2 φ/2 , and in the limit of very large gain

(λ � 1) only the first survives, giving a full contrast to the oscillation of I(λ, φ) when varying φ from 0 to π. The

last two terms in equation (10) represents the noise of the detection chains and severely limits the ability to measure

the e2λ cos2 φ
2 term.

Figure 3 shows in color scale I(λ, φ) measured as a function of the phase shift φ and the noise frequency f1 for a

power gain of 51dB at the band center G0=cosh2 λ. The noise intensity is maximum at the center fa of the band and

displays an interference pattern as function of φ. As shown in figure 3b, the noise intensity drops down to the noise

floor at φ=(2n+1)π, which is set by the noise of the following amplifiers in the two signal chains and whose value is

32 dB lower than the peak intensity. In figure 3d, we plotted the sinusoidal oscillation of the intensity integrated in a

200 KHz band around the center frequency. Note that on the linear scale used for the figure, the background noise is

invisible and the interference contrast is total. The minima of the interference for different gains are displayed in more

details on figure 3c where the scale is given in photon units referred to the output of the amplifier. Absolute noise

measurements performed previously have shown that the noise of the system referred to the input and expressed in

units of photons number is less than 2.2[14]. The data of figure 3c show that the interference between the two noise

channels can be destructive down to approximatively 700 of the 500,000 photons (for the highest gain of G0=-51 dB,

see Supplementary Information), corresponding to the sum of each channels taken separately (incoherent sum). This

noise intensity, referred to input of the JPC (700/G≈5.6 10−3) is much lower than one photon for the highest gain.

Such performance could not be obtained with classical microwave components like mixers and beam splitters, which

unlike Josephson devices introduce, due to dissipation, a noise equivalent to at least several photons.
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However, given the JPC amplifier gain and its minimal number of ports, the level of destructive interference could

reach in principle 2/G. The present stability of the following amplifiers prevented us to measure this extreme

squeezing effect governed by the second interference term in expression (10). On the other hand, the constructive

interference corresponding to the anti-correlated state, produces twice as many photons as the sum of the each

channel taken separately as expected (figure 4c).

The challenge of measuring the two-mode squeezing term in expression (10) could be addressed in an experiment

with two JPC’s with identical gain placed in series and where the interference would be produced by dephasing the

two pump signals. Such experiment in which one of the arms would contain a mesoscopic system such as a qubit

probed dispersively would constitute a quantum non-demolition measurement with no added noise. Alternatively, if

a microwave photon detector would become available, one could directly measure the photon correlation expressed

by relation (5). Finally, the experiment reported in this paper shows that the JPC could be used as a quantum

information processing non linear coupling element at the single photon level.
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