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We report on a search for charged massive long-lived particles (CMLLPs), based on 5.2 fb−1 of integrated
luminosity collected with the D0 detector at the Fermilab Tevatron pp̄ collider. We search for events in which
one or more particles are reconstructed as muons but have speed and ionization energy loss(dE/dx) inconsistent
with muons produced in beam collisions. CMLLPs are predicted in several theories of physics beyond the
standard model. We exclude pair-produced long-lived gaugino-like charginos below 267 GeV and higgsino-like
charginos below 217 GeV at 95% C.L., as well as long-lived scalar top quarks with mass below 285 GeV.

PACS numbers: 13.85.Rm,14.80.Ly

We report on a search for massive particles that are elec-
trically charged and have a lifetime long enough to escape
the D0 detector before decaying. Charged massive long-lived
particles are not present in the standard model (SM) nor are
their distinguishing characteristics (slow speed, highdE/dx)
relevant for most high energy physics studies. Although the
distinctive signature in itself provides sufficient motivation
for a search, some recent extensions to the SM suggest that
CMLLPs exist and are not yet excluded by cosmological
limits [1, 2]. Indeed, the standard model of big bang nucle-
osynthesis (BBN) has difficulties in explaining the observed
lithium production. The existence of a CMLLP that decays
during or after the time of BBN could resolve this disagree-
ment [3].

We derive cross section limits for CMLLPs and compare
them to theories of physics beyond the SM. In most super-
symmetric (SUSY) models the lightest SUSY particle is as-
sumed to be stable. Some SUSY models predict that the next-
to-lightest supersymmetric particle (NLSP) can be a CMLLP.

∗with visitors from aAugustana College, Sioux Falls, SD, USA,bThe Uni-
versity of Liverpool, Liverpool, UK,cUPIITA-IPN, Mexico City, Mex-
ico, dSLAC, Menlo Park, CA, USA,eUniversity College London, London,
UK, f Centro de Investigacion en Computacion - IPN, Mexico City, Mex-
ico, gECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico, and
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In this Letter we explore models that include a chargino as a
NLSP. If its mass differs from the mass of the lightest neu-
tralino by less than about 150 MeV, it can have a long lifetime
[4, 5]. This can occur in models with anomaly-mediated su-
persymmetry breaking (AMSB) or in models that do not have
gaugino mass unification. There are two general cases, where
the chargino is mostly a higgsino and where the chargino is
mostly a gaugino, which we treat separately in this Letter.

There are some SUSY models that predict a long-lived
scalar top quark (top squark) NLSP and a gravitino LSP. These
top squarks hadronize into charged or neutral hadrons that are
CMLLP candidates [6]. Hidden valley models predict scenar-
ios where the top squark acts like the LSP and does not decay
but also hadronizes into charged or neutral hadrons (referred
to as R-hadrons) that escape the detector [7, 8]. In general,
any SUSY scenario where the top squark is the lightest col-
ored particle (which will happen in models without mass uni-
fication and heavy gluinos) can have a CMLLP. Any colored
CMLLP will undergo hadronization and charge exchange dur-
ing nuclear interactions, which we discuss below.

This search utilizes data collected between 2006 and 2010
with the D0 detector [9] at Fermilab’s 1.96 TeVpp̄ Tevatron
Collider, and is based on 5.2 fb−1 of integrated luminosity. We
reported previously [10] on a similar 1.1 fb−1 study, searching
for events with a pair of CMLLPs, each with low speed. In ad-
dition to using the larger data sample, the present search looks
for one or more CMLLP, rather than only for a pair, and char-
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acterizes CMLLPs with highdE/dx in addition to slow speed.
Other searches for long-lived particles include those fromthe
CDF Collaboration [11, 12], the CERNe+e−Collider LEP
[13], and the CERNpp Collider LHC [14, 15].

The D0 detector [9] includes an inner tracker with two com-
ponents: an innermost silicon microstrip tracker (SMT) and
a scintillating fiber detector. We find a particle’sdE/dx
from the energy losses associated with its track in the SMT.
The tracker is embedded within a 1.9 T superconducting
solenoidal magnet. Outside the solenoid is a uranium/liquid-
argon calorimeter surrounded by a muon spectrometer, con-
sisting of drift-tube planes on either side of a 1.8 T iron toroid.
There are three layers of the muon detector: the A-layer, lo-
cated between the calorimeter and the toroid, and the B- and
C- layers, located outside the toroid. Each layer includes
scintillation counters which serve to veto cosmic rays. Thus
the muon system provides multiple time measurements from
which a particle’s speed may be calculated.

Because we distinguish CMLLPs solely by their speedβ
anddE/dx, we must measure these values for each muon can-
didate as accurately as possible. Muons fromZ → µµ events
studied throughout the data sample allow calibration of the
time measurement to better than 1 ns, with resolutions be-
tween 2-4 ns, and to maintain the meandE/dx constant to
within 2% over the data-taking period. From a specific muon
scintillation counter we calculate a particle’s speed fromthe
time recorded and the counter’s distance from the production
point, and we compute an overall speed from the weighted av-
erage of these individual speeds, using measured resolutions.
The ionization-loss data from the typically 8-10 individual en-
ergy deposits in the SMT are combined using an algorithm
that corrects for track crossing angle and omits the largestde-
posit to reduce the effect of the Landau tail. We calibrate the
dE/dxmeasurements by requiring that thedE/dxdistribution
of muons fromZ → µµ events has a maximum at 1. Figure
1 shows the distributions inβ anddE/dx for data and back-
ground events that pass the selection criteria described below.

The selection of a candidate CMLLP occurs in several
steps. Because of the highpp̄ collision rate, we employ a
three-level trigger system to reduce the event rate to the 200
Hz that can be recorded. The trigger system bases its deci-
sions on characteristics of the event, which for the CMLLP
candidates is the presence of a muon with a high momentum
transverse to the beam direction(pT). A time window at the
initial trigger level reduces triggers on cosmic rays. Thistrig-
ger gate lowers the trigger efficiency by 10% for CMLLPs
with a mass of 300 GeV (as they will be slow and some will
be out-of-time) and so contributes significantly to the overall
acceptance. We avoid a tighter timing gate usually imposed at
the second level of the muon trigger by accepting an alterna-
tive requirement that the muon have a matching track in the
SMT.

In the standard D0 event reconstruction CMLLPs would ap-
pear as muons, which has been verified in detail using simu-
lations. Thus, we select events with at least one well identi-
fied highpT muon. For a reliableβ measurement, the event

β
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Figure 1: Distributions of (a) speedβ and (b)dE/dx for data, back-
ground, and signal (gaugino-like charginos with a mass of 100 and
300 GeV) that pass the selection criteria. The histograms have been
normalized to have the same numbers of events. We have adjusted
the scale of thedE/dx measurements so that thedE/dx of muons
from Z → µµ events peak at 1. All entries exceeding the range of
the histogram are added to the last bin.

must have scintillator hits in the A-layer and either the B- or
C-layer. We require at least three hits in the SMT, to obtain
valid dE/dx data. For an optimal tracking and momentum
measurement we require the muon to be central, i.e., with a
pseudorapidity [16]| η |< 1.6. To reject muons from me-
son decays, we impose the isolation requirement that the sum
of the pT be less than 2.5 GeV for all other tracks in a cone
of radius R=

√

(∆φ)2+(∆η)2 < 0.5. We also require that
the total transverse calorimeter energy in an annulus of radius
0.1<R< 0.4 about the muon direction be less than 2.5 GeV.
A requirement that the z-coordinate of the muon track at the
location of closest approach to the beam axis be< 40 cm en-
sures that the particle passes through the SMT.
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We impose further criteria to eliminate cosmic rays. To
select muons traveling outwards from the apparent interac-
tion point, we require that its C-layer time be significantly
greater than its A-layer time. We require also that the muon’s
distance-of-closest-approach to the beam line be less than
0.02 cm. These criteria are also applied to additional muons
in the event. For events with exactly two muons we re-
quire that the absolute value of the difference between each
muon’s A-layer times be less than 10 ns. To reject cosmic
rays that appear as two back-to-back muons, we require that
∆α = |∆θ +∆φ −2π |> 0.05.

Events with a muon from aW boson decay, with mismea-
surements providing inaccurate values of the muon’sβ and
dE/dx, constitute a potentially large background. To study re-
jection criteria for this background, we select data with trans-
verse massMT < 200 GeV [17] to model the data in the ab-
sence of signal [18]. We choose selection criteria that min-
imize the number of events surviving from this background
sample compared to events from simulations of the CMLLP
signal. We require that events contain at least one muon with
pT > 60 GeV. From a separate sample of muons fromZ→ µµ
decays we observe that the association of a spurious scintilla-
tor hit with a muon track can result in an anomalously lowβ
value. We use an algorithm that discards such hits through
minimizing theχ2/d.o. f . for the β calculated from the dif-
ferent scintillator layers. By comparing the effect on the back-
ground sample with the effect on simulated signal, we choose
to eliminate events unless the minimized speedχ2/d.o. f . <
2. Finally, we compare the muon’s track direction measured
by the muon system with that measured in the central tracker,
and eliminate events with clearly mismatched tracks.

To simulate signal events, we generate CMLLP candi-
dates usingPYTHIA [19], with specific models following
those described in Ref. [20]. The long-lived top squarks
are hadronized using [21]. Because the signature of the
CMLLP cascade decays is model dependent and difficult to
simulate accurately, we generate direct pair-production of the
CMLLPs, without including cascade decays. We use the full
D0 detectorGEANT [22] simulation to determine the detec-
tor response for these samples (which include overlaid data-
basedpp̄ interactions). The results are applicable to models
with pair-produced CMLLPs with similar kinematics.

The top squarks form charged or neutral R-hadrons, which
may flip their charge as they pass through the detector. In
the simulation, approximately 60% of R-hadrons are charged
following initial hadronization[23], i.e., 84% of the events
will have at least one charged R-hadron. Further, R-hadrons
may flip their charge through nuclear interactions as they pass
through material. We assume that R-hadrons have a probabil-
ity of 2/3 of being charged after multiple nuclear interactions
and anti-R-hadrons a probability of 1/2 of being charged, con-
sistent with the numbers of possible hadronic final states [24–
26]. For this analysis we require the R-hadron to be charged
before and after passing through the calorimeter, i.e., to be
detected both in the tracker and in the A-layer, and to be
charged after the toroid, i.e., to be detected in the B- or C-

layers. The probability for at least one of the R-hadrons being
detected is then 38%, or 84% if charge flipping does not oc-
cur. We include these numbers as normalization factors in the
confidence-level analysis discussed below.

Our final selection criterion is that the candidate’s speed
β < 1. Thus, we describe the background by theβ < 1 data
events withMT < 200 GeV, and search for CMLLP candi-
dates inβ < 1 data withMT > 200 GeV. We normalize the
background and data samples in theβ > 1 region, where the
contribution of signal is negligible. The uncertainties inthe
speed measurements depend on the particle’sη , due to detec-
tor geometry. Since the distributions inη of the muons in the
MT < 200 GeV sample differ from those in theMT > 200 GeV
sample, we use the signal-free region to derive correction fac-
tors for the background sample that match itsη distribution to
that of the data.

We utilize a boosted decision tree (BDT) [27] to discrim-
inate signal from background. The most discriminating vari-
ables are the CMLLP candidate’sβ anddE/dx, but we also
include several related variables: the speed significance,de-
fined as(1− β )/σβ , the corresponding number of scintil-
lator hits, the energy loss significance defined as(dE/dx−
1)/σdE/dx, and the number of SMT hits. For each mass point
in all three signal models we train the BDT with the signal
simulation and the background, and then apply it to the data
samples. Figure 1 shows the distributions inβ and indE/dx
for the data and background samples, as well as for two rep-
resentative signals.

Systematic uncertainties are studied by applying variations
to the background and signal samples and determining the de-
viations in the BDT output distributions. Two of the system-
atic uncertainties affect the shape of the BDT distributionof
signal and their effect is taken into account explicitly in the
limit calculation: the uncertainty due to the width of the Level
1 trigger gate and the uncertainty in the corrections to the sim-
ulation’s time resolution. By examining the signal-like region
of the BDT distributions, we find that the maximum (average)
uncertainty is 10% (4%) for the trigger gate width, and 38%
(7%) for the time resolution correction. All other systematic
uncertainties affect only the normalization of the BDT output.
The systematic uncertainties on the background are due to the
dE/dxmodeling (< 0.1%) and the background normalization,
from the specific values used for theβ (7.2%) andMT require-
ments (2.2%). The systematic uncertainties on the signal in-
clude muon identification (2%) and the integrated luminosity
(6.1%) [28]. The systematic uncertainties associated withthe
corrections to the muonpT resolution and to thedE/dx res-
olution, as well as the choice of PDF and factorization scale,
are all below 1%.

We obtain the 95% C.L. cross section limits from the BDT
output distributions, constraining systematic uncertainties to
data in background dominated regions [29]. These limits
are shown in Fig. 2, together with the next-to-leading or-
der (NLO) theoretical signal cross sections, computed with
PROSPINO[30]. Using the nominal (nominal -1 standard devi-
ation) values of the NLO cross section, we are able to exclude
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Figure 2: Cross-section limits at 95% C.L. as a function of mass
for (a) gaugino-like charginos, (b) higgsino-like charginos, and (c)
top squarks. The top squark limits are displayed for the assumed
charge flipping (charge survival probability = 38%) and for no charge
flipping (charge survival probability = 84%).

gaugino-like charginos below 267 (265) GeV and higgsino-
like charginos below 217 (214) GeV [31]. For top squarks,
we assume a charge survival probability of 38%, as discussed
above, and exclude masses below 285 (275) GeV. If charge
flipping does not occur, we obtain a higher mass limit, as in-
dicated in Fig. 2c.

As shown in Fig. 2, the observed limit exceeds the expected
limit at various mass points by as much as 2.5 standard devi-
ations, for all signals tested, due to the presence of the same
few data events with high BDT discriminant values. This dis-
crepancy reflects the excess of data compared to background
observed in Fig. 1 for the distributions both inβ (around 0.6)
anddE/dx (around 2.8). The kinematics of these events are
consistent with a statistical fluctuation of the background.

In the mass range 200-300 GeV the observed cross section
limits shown in Fig. 2 are of order 0.01 pb for both chargino
signals and for the top squark signal with the charge survival
factor removed. Since we consider only direct pair produc-
tion and neglect the contribution of cascade decays, the signal
cross sections and the kinematics mainly depend on the mass
rather than on details of each individual model [32]. Thus,
we are able to place a cross section limit of order 0.01 pb, for
directly-produced CMLLPs in this mass range.

In summary, we perform a search for charged, massive
long-lived particles using 5.2 fb-1 of integrated luminosity
with the D0 detector. We find no evidence of signal and set
95% C.L. cross-section upper limits of order 0.01 pb for pair-
produced CMLLPs of mass 200-300 GeV. At 95% C.L. we
exclude pair-produced long-lived top squarks with mass be-
low 285 GeV, gaugino-like charginos below 267 GeV, and
higgsino-like charginos below 217 GeV. These are presently
the most restrictive limits for chargino CMLLPs, with abouta
factor of five improvement over the previous D0 cross section
limits [10].
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