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We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrin-
sic angular momentum (AM). When observed in a moving reference frame, the centroid of the object
undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect,
which occurs in free space without any external fields. Remarkably, the shifts of the geometric and
energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations
of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices,
and mechanical flywheels, and also discuss various fundamental aspects of this phenomenon. The
perfect agreement of quantum and relativistic approaches allows applications at strikingly different
scales: from elementary spinning particles, through classical light, to rotating black-holes.

PACS numbers: 42.50.Tx, 03.65.Pm, 03.30.+p

Hall effects represent a group of phenomena which ap-
pear from the interplay between rotation and linear mo-
tion of particles. These phenomena are associated with
a transverse drift of the particle, orthogonally to both
its angular momentum (AM) and external force. For in-
stance, in classical and quantum Hall effects, electrons
rotate in a magnetic field and drift orthogonally to the
applied electric field [1]. Recently, various spin-Hall ef-
fects attracted enormous attention in condensed-matter
[2], optical [3], and high-energy [4] systems. These ef-
fects arise from a spin-orbit-type interaction between the
intrinsic AM of the particle and its external motion. De-
spite striking differences between the systems, the spin-
Hall effects are intimately related to universal AM con-
servation laws [2–5]. Noteworthily, the intrinsic AM of
waves or quantum particles can be associated with a cir-
culating internal current which can originate not only
from spin but also from optical (quantum) vortices [6, 7].

In this Letter, we describe a novel type of Hall effect
which naturally arises in special relativity without any
external fields. We show that the Lorentz space-time
transformation of either a rotating mechanical body or a
quantum vortex inevitably causes AM-dependent trans-
verse deformations of the object and the Hall shift of its
centroid. Moreover, the energy and particle deformations
differ by a factor of 2, which is necessary for the Lorentz
transformations of the AM tensor. Being similar to the
spin-Hall effect, the phenomenon under discussion is a
purely relativistic effect intimately related to the trans-
formations of time. Examples manifesting the relativistic
Hall effect include: a moving quantum vortex, a rela-
tivistic flywheel [8], and the “rolling-shutter effect” that
appears on a camera snapshot of a rotating propeller [9].
Relativistic transformations of the intrinsic AM can be
important for waves in moving media [10], high-energy
physics [11], and astrophysics [12], where the relative ve-
locities are comparable to the speed of light.

Relativistic-mechanics approach.— The shape of a

rigid body and its intrinsic AM are invariant upon non-
relativistic Galilean transformations. However, they in-
evitably vary upon Lorentz transformations in special rel-
ativity. To begin with, the AM of a point particle is de-
scribed by a four-tensor Lαβ = rα∧pβ , where rα = (ct, r)
and pα = (ε/c,p) are four-vectors of the coordinates and
momentum in the Minkowski space-time [13]. The an-
tisymmetric AM tensor can be represented by a pair of
three-vectors, Lαβ = (H,L), where L = r × p is the
axial vector of the AM, whereas H = pct − (ε/c) r is
the polar vector marking the rectilinear trajectory of
the particle [13]. For a finite-size body (i.e., a system
of multiple particles), one has to sum the above quanti-
ties over all particles. In doing so, L =

∑

ri × pi and
H = Pct − (E/c) RE , where P =

∑

pi and E =
∑

εi
are the total momentum and energy, whereas

RE =

∑

εiri
∑

εi
, (1)

is the energy centroid of the body. Conservation of Lαβ

in free space includes conservation of the AM L and the
rectilinear motion of the energy centroid according to
ṘE = Pc2/E [13]. In the energy-centroid rest frame,
P = RE = H = 0 and E = E0.

Let us consider a transformation of the body from the
rest frame to a reference frame moving with relativistic
velocity v. For simplicity, we assume that in the rest
frame all particles move with nonrelativistic speeds, and
in the moving frame they all acquire nearly the same
speeds and energy-momentum boosts. This is a rela-
tivistic “paraxial approximation” for world-lines of the
constituent particles, which allows to write one-particle
Lorentz transformations for integral dynamical charac-
teristics: E′ ≃ γ E0, P′ ≃ −

(

γE0/c
2
)

v, etc. Here

γ = 1/

√

1− (v/c)2 is the Lorentz factor and throughout
the paper all quantities in the moving frame are marked
by primes. Applying the Lorentz transformation to the
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AM tensor with H = 0, we obtain

L′ = γ
(

L⊥ −
v

c
×H

)

+ L‖ = γ L⊥ + L‖ ,

H′ = γ
(

H⊥ +
v

c
× L

)

+H‖ = γ
v

c
× L , (2)

where subscripts ⊥ and ‖ indicate the vector components
orthogonal and parallel to v. Since L‖ is not affected
by the transformation, we assume that L⊥v and set
L = L ez, v = v ex. If one observes the body at t′ = 0,
then H′ ≃ − (γE0/c) R

′
E , and Eqs. (2) yield

L′ = γ L , Y ′
E ≃

v

E0
L (3)

Thus, in the moving frame, the AM is enhanced by the
factor γ, while the energy centroid experiences a trans-
verse shift Y ′

E proportional to the original AM L. This
is a manifestation of the relativistic Hall effect.
To illustrate this, we consider the example of an

axially-symmetric rigid body rotating about the z-axis
and carrying intrinsic AM L = L ez in the centroid rest
frame (see Fig. 1a). In the moving frame, the body under-
goes a Lorentz contraction of the x-dimension with the
factor γ−1, i.e., becomes elliptical (Fig. 1b). However,
elliptical deformation results in the following change of
the intrinsic AM (cf. optical-vortex example [5]):

L′ (int) =
γ−1 + γ

2
L . (4)

This follows from the axial symmetry of the body and
the equation Lz =

∑

xi pyi
− yi pxi

, where xi experi-
ences contraction with the factor γ−1, while pxi

grows by
the factor γ. Obviously, Eq. (4) differs from the Lorentz
transformation (3). The deficit of AM can be found only
in the extrinsic AM, produced by the orbital motion of
the body centroid, R′

C :

L′ (ext) = (R′
C ×P′)z = −Y ′

C P
′
x . (5)

This situation is similar to the spin-Hall effect in various
systems, where variations in the intrinsic AM are com-
pensated at the expense of the centroid shift generating
extrinsic AM [2, 3, 5]. Using P ′

x ≃ −
(

γE0/c
2
)

v, and

requiring L′ (int) + L′ (ext) = L′, we obtain

Y ′
C ≃

v

2E0
L . (6)

But this shift is two times smaller than Y ′
E in Eq. (3),

and we again have a contradiction with the Lorentz trans-
formation!
To resolve this discrepancy, note that the extrinsic AM

(5) is defined using the geometric centroid of the body,
determined with respect to the local number of particles,
n, rather than the energy ε:

RC =

∑

niri
∑

ni

, (7)

FIG. 1: (color online). (a) A relativistic flywheel of radius
R rotating with angular velocity Ω, ΩR/c = 0.7, in the rest
frame [14]. (b) Deformations of the wheel shape in the frame
moving with velocity vx = 0.7 c [8]. The dots indicate the
positions of the geometric and energy centroids, R′

C and R′

E .

If RE = RC = 0 in the rest frame, all transformations
become consistent only if the energy and particles cen-
troids differ as

R′
E = −v t′ −

v × L

E0
, R′

C = −v t′ −
v × L

2E0
. (8)

Equations (8) indeed hold true, as it follows from ex-
plicit calculations [8], considering a relativistic spinning
flywheel. Figure 1 shows numerically-calculated defor-
mations of the wheel in the moving reference frame.
Alongside with the x-contraction, the y-distribution of
matter also becomes non-uniform: the spokes become
crowded and sparse on opposite y-sides of the wheel,
Fig. 1b. This is as a sort of “blue” and “red” wave-
length shifts in the relativistic Doppler effect: the y > 0
and y < 0 sides of the wheel move in opposite directions
with respect to the velocity v. Calculating the density
of particles (spokes) along the rim, one can obtain that
its centroid is located at Y ′

C , Eq. (6). In addition to the
shape deformations, a rotating body also acquires mass
deformations. The y > 0 and y < 0 sides of the wheel
have different velocities and different local γ-factors in
the moving frame. Owing to this, the y > 0 particles
become heavier than the y < 0 particles. Accounting
this yields precisely the two-times-higher transverse shift
of the energy centroid, Y ′

E , Eq. (3) [8]. Thus, the mi-
croscopic picture, Fig. 1, dealing with local particle and
energy distributions, complements the macroscopic pic-
ture, Eqs. (2)–(6), dealing with the body as a whole, and
explains the origin of the different centroid shifts (8).
Importantly, all relativistic shape deformations orig-

inate from the nature of simultaneity. This can be il-
lustrated by representing the Lorentz boost as a rota-
tion in Minkowski space-time. Figure 2a shows a rotat-
ing flywheel in the (x, y) plane which propagates freely
along the time coordinate ζ = ct forming a cylindrical
beam in space-time. In doing so, different points of the
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wheel have helical world-lines within the cylinder. The
Lorentz transformation represents a hyperbolic rotation
of the coordinates, Rh(θ): (x, ζ) → (x′, ζ′), by the angle
θ = tanh−1(v/c). As a result, the image of the circle
at ζ′ = 0 represents a tilted cross-section of the beam,
Fig. 2a. This is equivalent to the x-dependent time delay:
condition ζ′ = 0 yields ζ = x tanh θ. The combination of
this time delay with the circular motion yields the rela-
tivistic Hall effect. Indeed, equidistant spiral world-lines
in Fig. 2a become crowded at y > 0 and sparse at y < 0
in the tilted cross-section of the cylinder.
Figure 2a also reveals a close similarity between the

relativistic Hall effect and recently predicted geometric
spin-Hall effect of light [15]. The latter also occurs in
free space upon observation of a paraxial optical beam
with intrinsic AM in the tilted reference frame. Let the
beam propagate along the z-axis, and the tilted frame is
obtained via a rotation by an angle θ about the y-axis,
R(θ): (x, z) → (x′, z′). Then, it turns out that the dis-
tribution of the energy flow through the z′ = 0 plane
differs from that through the z = 0 plane, and its cen-
troid undergoes an AM-dependent transverse shift along
the y-axis [15]. This situation is described by the same
Fig. 2a, if we assume ζ = z. In this manner, the heli-
cal lines represent streamlines of the energy current (the
Poynting vector) in the beam carrying AM [6, 7, 16], and
the density of the energy flow through the oblique z′ = 0
plane becomes higher at y > 0 and lower at y < 0. Since
propagation along the z-axis plays the role of time evolu-
tion in optics, here one deals with the same “x-dependent
time-delay” effect: z′ = 0 implies z = x tan θ. Moreover,
the value of the spin-Hall shift of the energy-flow cen-
troid in the tilted optical beam can be written as [15]
Y ′
SHEL = (c tan θ/2E0)L, where E0 = ~ω0 and L = ~ ℓ

are the photon energy and AM (ℓ being the polarization
helicity or the vortex charge). For the relativistic Hall
effect, Y ′

C , Eq. (6), has almost identical form with the
only change tan θ → tanh θ = v/c.
The key role of the “x-dependent time-delay” in the

above Hall effects can be exemplified by the so-called
“rolling-shutter effect”. This is a characteristic distortion
of the image of a rotating object made by a camera with
the shutter moving in the x-direction, Fig. 2b [9]. Despite
the nonrelativistic velocities, the rolling-shutter effect is
entirely analogous to the relativistic Hall effect, Fig. 1b.

Quantum-wave approach.— Let us now examine a rel-
ativistic quantum (wave) system carrying intrinsic AM.
We consider amonochromatic Bessel beam [11, 17] propa-
gating in the z-direction and described by the wave func-
tion

ψ(r, t) ∝ J|ℓ|(κr) exp [i(ℓ ϕ+ kzz − ω0t)] . (9)

Here Jn(ξ) is a Bessel function, (r, ϕ, z) are cylindrical
coordinates, κ and kz are the transverse and longitudi-
nal wave numbers, ℓ = 0,±1,±2, ... is the AM quantum

FIG. 2: (color online). (a) Geometrical explanation of the
relativistic Hall effect induced by the Lorentz rotation of the
space-time (ζ = ct). The density of helical world-lines of a
rotating flywheel becomes y-asymmetric in the moving frame.
This also illustrates the geometric spin-Hall effect of light pro-
duced by the rotation of coordinates (ζ = z) [15] (see expla-
nations in the text). (b) The “rolling-shutter effect”: a visual
distortion and y-shift of the centroid of a rotating propeller
caused by the x-dependent time delay from the moving shut-
ter of the camera [9], cf. Fig. 1b.

number, and ω0 is the frequency. The Bessel beam (9) is
an exact solution of the relativistic Klein-Gordon equa-
tion, if the wave numbers and frequency satisfy the dis-
persion relation (ω0/c)

2 −
(

k2z + κ2
)

= m2c2/~2 ≡ µ2,
with m being the mass of the quantum particles under
consideration.
The beam (9) has a cylindrically-symmetric intensity

distribution and contains an optical (quantum) vortex,
i.e., an azimuthal phase exp(iℓϕ) forming a screw phase
dislocation along its axis, Fig. 3a [6, 7, 18]. The vortex
generates a spiralling energy current in the beam and
provides a well-defined intrinsic AM L = ~ ℓ per particle
[6, 7]. Using operators of energy, ε̂ = i~ ∂t, momentum,
p̂ = −i~∇, and AM, L̂ = r̂ × p̂, one can see that the
Bessel beams (9) are eigenfunctions of ε̂, p̂z, and L̂z =
−i~ ∂ϕ, with eigenvalues E0 = ~ω0, Pz = ~ kz, and L =
~ ℓ.
Since the Klein-Gordon equation is Lorentz-invariant,

one can find the form of the Bessel beam in the moving
reference frame by substituting the Lorentz transforma-
tion
(

ct
x

)

= γ

(

1 v/c
v/c 1

)(

ct′

x′

)

, y = y′, z = z′, (10)

into Eq. (9). Then, the scalar wave function in the
moving frame becomes ψ′ (r′, t′) ≡ ψ [r (r′, t′) , t (r′, t′)],
whereas the beam ψ′ (r′, t′) becomes polychromatic and
moves in the x′-direction with velocity −v. Plotting the
intensity I ′ = |ψ′ (r′, t′)|

2
at t′ = 0 one would see an el-

liptical vortex beam obtained by the Lorentz contraction
x → γx′ of the original intensity I = |ψ (r, t)|

2
. It is

known [5], that such elliptic beam carries intrinsic AM
L′ (int) given by Eq. (4), which contradicts the Lorentz
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transformations (2) and (3).

To resolve this discrepancy, note that the “naive” wave
intensity I = |ψ|

2
and current j = Im (ψ∗∇ψ) do not

represent the density of particles (
∫

I dV is not Lorentz-
invariant) and the energy current. The actual density of
particles IC is given by the zero component of the proba-
bility current, whereas the energy density IE and energy
current jE are provided by the stress-energy tensor. In
the case of the Klein-Gordon equation, these quantities
read (ζ ≡ ct) [19]:

IC = −Im [ψ∗∂ζψ] , IE =
1

2

[

|∂ζψ|
2
+ |∇ψ|

2
+ µ2 |ψ|

2
]

,

jE = −Re
[

(∂ζψ)
∗
(∇ψ)

]

. (11)

For plane waves, this yields simple ω-scalings: IE =
(ω/c)

2
I, jE = (ω/c) j, and IC = (ω/c) I, which make

no difference for monochromatic beams in the rest frame.
However, a Lorentz transformation to the moving frame
affects these distributions via local variations of the fre-
quency. Figure 3b shows the transverse distributions of
I ′C and I ′E in the moving beam at t′ = 0. The particle
and energy distributions differ from each other and show
an asymmetry along the y-direction. (This asymmetry
is two times higher for I ′E because of the ω2-scaling in
IE versus the ω-scaling in IC .) In the paraxial approx-
imation, κ ≪ kz, the y-asymmetry does not affect the
integral energy and momentum of the moving beam [20]:

E′ = ~

∫

I ′E dV
′

∫

I ′C dV
′
, P′ = ~

∫

j′E dV
′

∫

I ′C dV
′
, (12)

which yield E′ ≃ γE0 and P′ ≃ Pzez −
(

γE0/c
2
)

v,
in agreement with the Lorentz transformations. At the
same time, the y-asymmetry of the distributions is cru-
cial in calculations of the AM and the beam centroids
in the moving frame. Indeed, these quantities should be
defined as

L′ = ~

∫

r′ × j′E dV
′

∫

I ′C dV
′

, R′
E,C =

∫

r′ I ′E,C dV
′

∫

I ′E,C dV
′
, (13)

and r′ in the integrands cuts the antisymmetric parts of
I ′C , I

′
E , and j′E . Evaluating the integrals (13) for the

beam (9) in the moving frame (10) yields [20] L′ ≃ γ L,
Y ′
E ≃ (v/E0)L, and Y

′
C ≃ (v/2E0)L, in exact correspon-

dence with the mechanical results (3), (6), and (8).

Thus, the relativistic deformations of a localized wave
carrying intrinsic AM are entirely analogous to those of
a rotating rigid body. Alongside with the distortions of
the particle and energy distributions, Fig. 3 demonstrates
a remarkable metamorphosis of the phase patterns in
the moving frame. A screw wavefront dislocation with
symmetric radial phase fronts in the rest frame (Fig. 3a)
transforms into the moving edge-screw dislocation with
crowding of the wavefronts at y > 0 and sparseness at

FIG. 3: (color online). Intensity I , current j, and phase
Φ = argψ distributions for the Bessel beam (9) with ℓ = 2,
kzc/ω0 = 0.33, κc/ω0 = 0.8, and µc/ω0 = 0.5 [14] in the rest
frame (a) and in the frame moving with velocity vx = 0.8 c
(b). In the moving frame, the particle and energy distribu-
tions, IC and IE, acquire centroid shifts R′

C and R′

E , whereas
the charge-2 screw phase dislocation metamorphoses into the
moving charge-2 edge dislocation [18] (cf. Figs. 1 and 2b).

y < 0 (Fig. 3b) [18]. This is quite similar to the re-
distribution of the spokes in the relativistic flywheel, cf.
Figs. 1 and 2b.

Discussion.— The relativistic Hall effect illuminates
fundamental aspects of the AM. The interplay of rela-
tivistic and quantum theories can be a subtle issue which
often rises nontrivial questions and paradoxes. Our de-
scription makes relativistic and quantum aspects of the
AM fully consistent with each other. Furthermore, sev-
eral fundamental consequences can be immediately de-
duced from the above theory.

Specifically, the impossibility to shrink an object carry-
ing intrinsic AM to a point follows from the relativistic
Hall effect [13b]. Since the particle and energy centroids
must be within the body boundaries, the minimal ra-
dius of the body can be estimated from Eqs. (3) and (6)
at v ≃ c as Rmin ∼ c |L| /E0. This estimation works
in strikingly contrasting situations. First, substituting
E0 = ~ω0 and L = ~ ℓ, Rmin determines the minimal
radius of a tightly focused optical beam carrying intrin-
sic AM [21]. Second, for E0 = Mc2, Rmin estimates the
minimal Schwarzschild radius of a rotating Kerr black-
hole [13a]. Finally, if E0 = mc2 and L ∼ ~, Rmin yields
the Compton wavelength, i.e., the minimal radius of the
Dirac electron wave packet with spin [4c].

In addition, the relativistic Hall effect sheds light on
the spin-Hall effect of a Dirac electron moving in an ex-
ternal potential. This effect is caused by the spin-orbit
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interaction, but the nonrelativistic limit of the covari-
ant equations of motion predicts an electron trajectory
deflection two times larger than that derived from the
standard spin-orbit Hamiltonian [4]. Since it is the energy
centroid that follows the one-particle equation of motion,
this might yield the factor of 2 in the spin-Hall deflec-
tion. Indeed, the covariant equation of motion [4], δṙ =
p/m+ (ṗ× S)/(m2c2) (S being the spin), can be imme-
diately derived differentiating R′

E = −vt′ − (v × L)/E0,
with L = S, E0 = mc2, p = −mv, and without involving
any electromagnetic interactions.
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