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Using computer simulations we show that lipid membranes can mediate linear aggregation of
spherical nanoparticles binding to it for a wide range of biologically relevant bending rigidities. This
result is in net contrast with the isotropic aggregation of nanoparticles on fluid interfaces or the
expected clustering of isotropic insertions in biological membranes. We present a phase diagram
indicating where linear aggregation is expected, and compute explicitly the free energy barriers
associated with linear and isotropic aggregation. Finally, we provide simple scaling arguments to
explain this phenomenology.

Lipid membranes have unique mechanical properties
that are crucial for many biological processes, including
cellular recognition, signal transduction, inter- and in-
tracellular transport, and cell adhesion. Most of these
processes require interactions of a lipid-bilayer with a va-
riety of nano- and micro-size objects, such as proteins,
DNA, viruses and other biomacromolecules. Along with
its fundamental importance, understanding the interac-
tions of fluid membranes with nano-objects is a crucial
component in targeted drug-delivery design and in nan-
otoxicity studies. It also has intriguing implications for
medical imaging [1] and for the development of biosensors
and functional biomimetic materials [2, 3].

Lipid membranes are typically very flexible and under
thermal perturbations they undergo surface deformations
that are significantly larger than their thickness. Because
of such a flexibility, they can easily be deformed when
interacting with nano-particles that can be either ad-
sorbed on the membrane surface or embedded in the lipid
bilayer. The resulting membrane deformations may in
turn mediate interactions between the membrane-bound
objects. This phenomenon has been extensively studied
over the past two decades, both experimentally and the-
oretically. Most of the previous studies focused on the
interactions between embedded inclusions. A bending-
mediated Casimir-like isotropic interaction was initially
proposed as a possible mean of driving protein aggrega-
tion on a lipid bilayer [4, 5]. Later papers have shown
that a more accurate accounting of the local constraints
imposed by non-isotropic inclusions on the membrane can
lead to additional complex terms whose sign and func-
tional form is very much dependent on how the objects
anchor to the surface; see for instance [6–10] and ref-
erences therein. Hydrophobic mismatch [11], difference
in curvature between the membrane and the embedded
objects [12–14] or line tension between the lipids and the
inclusions [15] can also induce domain formations.

Adsorption or inclusion of objects comparable in size
to the membrane thickness (∼ 5nm) greatly perturbs
the local packing of the lipids leading to quite complex
phenomena dependent on the molecular details of the
membrane-object interactions. When considering larger
objects, on the contrary, it becomes feasible to describe

the membrane as a continuous surface and coarse-grain
its interactions with the nanoscopic objects with generic
binding potentials. Here we are interested in membrane
driven interaction between adsorbing colloidal particles
that are more than one order of magnitude larger than
the membrane thickness. Despite their structural com-
plexity, for sufficiently large scales the behavior of lipid
membranes can be described by a small number of elastic
parameters that capture their response to deformation;
a bending rigidity κb of the order of 10kBT , and a small
surface tension γ ≈ 10−2−10−3pN/nm are the most im-
portant ones. Both can be altered either by dispersing
within the bilayer additional molecular components, or
by changing the lateral forces/osmotic pressure applied
on the membrane.

In this paper we show that spherical nanoparticles ad-
hering to fluid membranes can self-assemble into a vari-
ety of two-dimensional aggregates. Significantly, for in-
termediate and biologically relevant values of the bend-
ing rigidity we find that particles preferentially arrange
into linear/flexible aggregates. This result is in striking
contrast with most of the theoretical studies on mem-
brane inclusions that predict isotropic aggregation when
the embedding object imposes an isotropic deformation
on the surface. Linear aggregation is expected only for
sufficiently anisotropic wedge-like local deformations [7],
and this is clearly not the case for spherical nanoparti-
cles. We find that the key to understand the stability of
linear versus isotropic aggregates resides in the interplay
between bending and binding energies of the nanopar-
ticles. The latter term, usually and correctly neglected
when dealing with embedded nano-components, does in-
deed play a major role in the structural morphology of
the aggregates formed by non-embedded adhering com-
ponents.

It should be stressed that string-like formations very
similar to those we present here have been observed ex-
perimentally in several systems. For instance, colloidal
particles bound to giant phospholipid vesicles (GUV) via
streptividin-biotin bonds or by electrostatic physisorp-
tion form one-dimensional ring-like assembles [16]. Simi-
larly, the cationic lipid-DNA complexes of low net charge
assemble into linear colloidal aggregates when adsorbed
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to the cell membrane [17]. However, to the best of our
knowledge, this phenomenon has never been explained,
nor studied in detail. In this paper we use a combination
of numerical simulations and scaling arguments to detail
the physical origin behind it.

We performed Monte Carlo simulations of planar and
spherical fluid membranes interacting with adsorbing
nanoparticles. The membrane is modeled using a sim-
ple one particle-thick solvent-free model, and consists of
N hard spherical beads, of diameter σ, connected by flex-
ible links to form a triangulated network [18–20] whose
connectivity is dynamically rearranged to simulate the
fluidity of the membrane. The membrane bending en-
ergy acts on neighboring triangles, and has the form

Eij =
κb
2

(1− ni · nj) , (1)

where κb is the bending rigidity, and the ni and nj are the
normals of two triangles i and j sharing a common edge.
The cost associated with area changes is included via the
energy term Eγ = γA, where γ is the tension of the sur-
face and A is its total area. A nanoparticle is modeled
as a sphere of diameter σnp = Zσ, with Z = 3, 4 or 6.
Excluded volume between any two spheres in the system
(nanoparticles and surface beads) is enforced with a hard-
sphere potential. Finally, the nanoparticle-to-surface ad-
hesion is modeled via a generic power-law potential be-
tween the nanoparticles and the surface beads defined
as

Vatt(r) = −D0

(σM
r

)6

(2)

with σM = (σ+σnp)/2, and cutoff at rcut = 1.5σM . Fol-
lowing [21], simulations of the planar membrane were car-
ried out in the NγT ensemble, while the NV T ensemble
was used for the spherical membrane. In each simulation
the number of nanoparticles is held constant, and the sur-
face tension is set to γ = 3kBT/σ

2. For σ ≈ 30 − 50nm
we have nanoparticles of diameter σnp = 100 − 200nm
and surface tensions γ ≈ 10−2 − 10−3pN/nm.

We begin by computing the phase behavior of the sys-
tem for different values of the surface bending rigidity
κb and nanoparticles’ adhesive energy D0. The results
are summarized in the left panel of Fig. 1, and report
the structure of the aggregates observed for each pair
[κb, D0] in the case of the planar geometry. A gas phase
occurs when D0 is too weak for the particles to deform
the membrane. In this phase particles are just lightly
bound to the surface, they are highly mobile, and have
a certain probability of detaching from it. An arrested
phase occurs for large values of D0. In this case particles
bind very strongly to the membrane resulting in large
local deformations that heavily limit their mobility over
the surface. This typically leads to configurations that
are kinetically trapped or even to nanoparticle engulf-
ment. Three ordered phases occur for moderate values
of D0. Each of the three phases spans a range of κb val-
ues. For small values of the bending rigidity, particles

create well defined deep-spherical imprints in the mem-
brane and organize into ordered hexagonal arrays (H1).
Low cost in bending energy and high gain in surface bind-
ing allows for these deep deformations. In this phase the
nanoparticles are not in direct contact with each other,
but are separated by the pinched parts of the membrane.
Close-packing maximizes sharing of the pinched regions
between neighboring nanoparticles, thus maximizing the
surface-to-nanoparticle contact area. An identical result
is obtained when repeating the simulations on the spher-
ical membrane, and is reminiscent of the experimentally
observed two-dimensional hexagonal crystal formed by
negatively charged particles on positively-charged sur-
factant vesicles reported in [24]. Even in this case the
colloids are extensively wrapped by the membrane and
are not in direct contact with each other.

For biologically relevant values of κb, our nanoparticles
create smooth channel-like distortions on the membrane
and self-assemble into linear aggregates (L) non unlike
those predicted for anisotropic membrane inclusions [7].
Although we have not computed a structural phase dia-
gram for our vesicle model, we find that the simulations
on the vesicle performed at different nanoparticle con-
centrations and vesicle radii lead to analogous results.
Here particles form sinuous linear patterns that tend to
follow the equatorial lines of the vesicle. Snapshots from
our simulations are shown in the right panel of Fig. 1.
This phase strikingly resembles the linear aggregates of
colloidal particles on Giant Phospholipid Vesicles (GUV)
obtained in [16].

For very large values of κb the nanoparticles re-
organize into the familiar hexagonal lattice, however,
unlike what happens for the small κb aggregates, the
membrane now remains almost completely flat and the
nanoparticles are in contact with each other (H2). Be-
cause of its high stiffness, particles can only weekly de-
form the membrane to gain in binding energy, as a re-
sult the binding energy is minimized by recruiting the
largest number of membrane beads in the vicinity of the
nanoparticles. This effectively drives the crystallization
of the region of the membrane that directly interacts
with the nanoparticles, creating a line tension between
crystalline and fluid membrane regions that is minimized
when isotropic aggregation takes place [13, 14].

As mentioned before, the formation of linear aggre-
gates is quite surprising. To ensure that our results are
not affected by the triangulation underlying the defini-
tion of our membrane model, we repeated our simula-
tions using the coarse-grained, but tether-free model pro-
posed by Zhang et al. [22]. This model also accounts for
possible topological changes in the surface, however the
elastic properties of the membrane are not fed to the sys-
tem in the form of parameters of an elastic energy, but
are encoded into the molecular details of the anisotropic
pair potentials between the effective building blocks of
the membrane, and need to be extracted by analyzing
the fluctuations spectrum of the surface [22], or by other
means. It is comforting to report that no qualitative dif-
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FIG. 1: Left panel: Phase diagram of particle self-assembly on a fluid surface in terms of the surface bending rigidity κb and
particle binding energy D0. The snapshots show typical aggregates in the H1, L and H2 phases in a top-to-bottom order, and
the deformation pattern they leave on the membrane. The membrane-area is A ' (40× 40)σ2, the nanoparticle-size σnp = 4σ
and their surface fraction ρ = 0.27. Right panel: Snapshots of the linear aggregates on the spherical membrane. The upper
two snapshots show the system of R ' 15σ, σnp = 4σ and ρ = 0.11 and the bottom snapshot depicts R ' 45σ, σnp = 3σ and
ρ = 0.16.

(a) (b)

FIG. 2: (a) Angular free-energy profile for three nanoparticles
bound to the membrane at different values of binding constant
D0 and interaction range rcut. (b) Free-energy as a function
of the separation when a third particle approaches a fixed
dimer along the direction of the dimer’s axis (dashed line)
and perpendicular to it (full line). In both cases we used
κb = 20kBT and σnp = 3σ.

ference was found on the overall phenomenology of the
phase diagram: linear aggregates do indeed form and are
not an artifact of our model. We also checked that linear
aggregates do no form when limiting the area of the parti-
cles’ binding region to enforce a finite (constant) contact
angle between particles and membrane. This case is basi-
cally equivalent to enforcing isotropic regions with intrin-
sic curvature, mimicking for instance the local perturba-
tion of a protein, in a lipid bilayer for which isotropic
aggregation is expected [14].

To understand why linear aggregates become more fa-
vorable for moderate bending rigidities, we placed three
nanoparticles, A,B and C in linear formation and at a
kissing distance over a planar membrane, and calculated
the free energy cost required to disrupt the linear ar-
rangement. The idea is to keep in place particles A and
B and force particle C to form an angle ϕ0 between the
vector connecting particles A and B and that connect-
ing particles B and C while keeping the relative par-
ticle distance unaltered. Using the umbrella sampling
method [23], we can reconstruct piece-wise the proba-

bility that the trimer arranges according to any of the
explored angles, which in turns gives us access to the
free energy difference ∆F = F (ϕ) − F (π). All simula-
tions were repeated for different values of D0 and two
different ranges of the binding potential. The results are
shown in Fig. 2(a), and undoubtedly tells us that in this
region of the phase diagram the linear configuration is
the most stable one, with the close-packed compatible
configuration (ϕ0 = π/3) sitting in a metastable shallow
minimum of the free-energy curve separated from the lin-
ear configuration (ϕ0 = π) by a significant barrier. The
height of the barrier depends on the exact parameters,
but is typically larger than 4kBT inside the linear region
of the phase diagram. Fig. 2(b) shows the free-energy
as a function of particle separation when the third parti-
cle approaches the other two from infinity, either in the
linear or perpendicular alignment, as depicted in the in-
sets in Fig. 2(b). When the third particle approaches the
dimer to form a linear aggregate, the free-energy (when
particles are sufficiently close) decreases monotonically
down to a minimum at contact. When the third particle
approaches the dimer from a direction that is perpen-
dicular to the dimer’s axis, we observe a repulsive free
energy barrier that precedes a shallow minimum at con-
tact. Remarkably the range of the repulsion is felt as far
as three nanoparticle diameters (up to 9 times the range
of the attractive part), revealing correlations in the three
body interactions that are significantly longer than the
ones expect from a simple Casimir effect [6, 7].

To understand the unexpected stability of the linear
aggregates over the close-packed structures in the regime
where linear aggregation occurs, we measured the en-
ergy of the system associated with linear and hexago-
nal aggregates. The l.h.s of Fig. 3 shows explicitly how
the total energy difference between linear and hexagonal
aggregates, computed for the same values of γ,D0 and
kb, as a function of particle number N , is partitioned
between the bending (FL − FH)bend and the binding
(FL − FH)bind contribution. This analysis reveals that
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despite the smaller bending cost, hexagonal aggregates
provide a fairly small gain in binding energy when com-
pared to linear aggregates, and this leads to a net energy
balance that favors the latter. It is worth mentioning that
we monitored the difference in free energy due to the sur-
face tension between the two configurations, and found
it to be indeed negligible. We also checked that linear
aggregates form for our largest nanoparticles, Z = 6.

To rationalize these numerical data we offer the follow-
ing scaling argument. A quick look at the typical surface
deformations in this region of the phase diagram (see
snapshots on the r.h.s of Fig. 3) suggests that in either
linear or hexagonal configuration the contribution to the
system energy can be split in two parts. The first part
comes from the overall deformation of the membrane due
to the collective arrangement of the particles. The second
part comes from the shallow surface indentations (corru-
gations) produced by each particle on top of the overall
deformation. Let’s assume that the energy due to the
corrugation is fairly independent of the overall arrange-
ment of the aggregates. We can think of it as a particle
self energy e0 that is constant for a given κB , γ and D0.
The total self-energy is than E0 = e0N .

When particles arrange into linear structures (L), they
generate a channel-like profile in the membrane with
length proportional to the number of the nanoparticles
N and width proportional to σnp. The bending energy of
the channel can be estimated using the standard elastic
energy κB

2 (A/R2) [25] with A being the area and 1/R be-
ing the constant curvature of the deformation. Ignoring
the energy due to the contribution of the surface tension
and subtracting the contribution of the particles’ self en-
ergy, we can write the total free energy of the channel as
FL−E0 ≈ 2πα(κB

2 −D0σ
2
np)N , where 0 < α < 1 is a pa-

rameter that accounts for the degree of surface wrapping
per nanoparticle, and is related to the overall height of
the channel. Close-packed hexagonal (H) arrangements
form a flat, two-dimensional imprint of lateral size pro-
portional to

√
N . In this case, apart from a geometrical

prefactor, the free energy due to the rim of the imprint
scales as FH − E0 ≈ πα(κB

2 (1 + N−1) −D0σ
2
np)N

1
2 . In

fact, here the area is proportional to the length of the
rim and grows as

√
N , and the N−1 term accounts for the

small bending cost associated with the intrinsic curvature
of the rim kB/2c

2
0A with c0 ∼ N−1/2. Structural stabil-

ity requires both free energies to be negative (D0 >
κB

2σ2
np

for large N), which results in FL < FH , for sufficiently
large values of N making the linear aggregates more sta-
ble than the isotropic ones. In other words, the gain in

binding energy overwhelms the larger cost in bending.
In conclusion, we have computed a phase diagram

showing the different aggregates formed by nanoparticles
adsorbing onto a lipid bilayer as a function of the surface
bending rigidity and nanoparticles adhesive energy. Our
main result is that for a wide range of bending rigidities
κb ≈ 10− 100kBT , nanoparticles can organize into linear
aggregates − provided the binding energy is sufficiently
large.

FIG. 3: Left panel: Difference in bending, (FL−FH)bend, and
binding, (FL−FH)bind, energies between linear and hexagonal
aggregates as a function of particle number N at κb = 20kBT ,
D0 = 10.9kBT and σnp = 3σ. The dashed line indicates the
total energy difference between the two configurations. Right
panel: typical membrane profiles underneath the aggregates
in this regime.

Although linear aggregates are expected to form on
elastic (polymerized) surfaces due to the global con-
straints imposed on the surface deformations by the
stretching rigidity Ks ( at least in the large Ks limit) [26],
for fluid membranes Ks = 0. Our result is there-
fore quite different than the expected, and usually as-
sumed, isotropic aggregation mediated by either local
isotropic deformations of the surface or due to hydropho-
bic mismatch. The binding energy of the nanoparti-
cles, the missing ingredient in studies of aggregation of
membrane inclusions, is the key to rationalize this phe-
nomenology. We hope our work will induce further analy-
sis of membrane-mediated interactions between adhering
nanoparticles.
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