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We introduce a model to explain the observed ferromagnetism and superconductivity in LAO/STO
oxide interface structures. Due to the polar catastrophe mechanism, 1/2 charge per unit cell is trans-
ferred to the interface layer. We argue that this charge localizes and orders ferromagnetically via
exchange with the conduction electrons. Ordinarily this ferromagnetism would destroy supercon-
ductivity, but due to strong spin-orbit coupling near the interface, the magnetism and superconduc-
tivity can coexist by forming an FFLO-type condensate of Cooper pairs at finite momentum, which
is surprisingly robust in the presence of strong disorder.

Introduction – It is known that a conducting electronic
state can form at the interface between two insulating
oxides[1]. A particularly well studied example is the TiO2

interface between SrTiO3 and LaAlO3. The carrier den-
sity can be controlled by a backgate on the SrTiO3 side
and superconductivity (SC) has been discovered over a
range of densities with maximum Tc of about 0.3 K[2].
Recently, signs of ferromagnetism (FM) have also been
reported[3–7]. In particular, Li et al.[5] showed that SC
and FM coexist in the same sample and that the FM
moment is large, ≈ 0.3 − 0.4µB per interface unit cell.
Assuming that the FM and SC arise from the interface,
these observations raise the question of whether the SC
has to be unconventional in order to coexist with FM. Be-
fore addressing this question we need to understand first
the nature of the electronic state at the interface and up
to now no clear picture has emerged[8, 9, 11]. Are most of
the electrons localized or extended? Does the FM come
from local moments or the mobile electrons and what is
its origin? In this paper we propose a model for the inter-
face electrons which is consistent with existing transport
data. Based on this model we explain the existence of
FM and the coexistence of SC and FM. For the latter,
the key idea is that a large Rashba-type spin-orbit cou-
pling exists at the interface [12]. Such a Rashba term
is particularly favorable for the formation of a conden-
sate at finite momentum, called a Fulde-Ferrell-Larkin-
Ovchinikov (FFLO) state which coexists with FM[13, 14].
This general idea was pointed out earlier by Barzykin
and Gorkov[15]. However, they considered only the clean
case and their solution is quickly destroyed by disorder.
Surprisingly, with increasing disorder the FFLO state is
revived[16]. We suggest that the SC observed at the in-
terface is described by this disordered stabilized helical
FFLO state. This state is sometimes referred to as a
“helical” FFLO state[16] since, pairing occurs at a sin-
gle momentum q so that ∆(r) = ∆eiq·r unlike the usual
FFLO state where pairing occurs at both ±q so that
∆(r) = ∆ cosq · r.

The Model – As shown in Fig. 1, LaAlO3 consists
of layers with alternating charged, while SrTiO3 has
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FIG. 1. Schematic depiction of the SrTiO3/LaAlO3 oxide
interface structure. Filled and empty circles depict Ti and
Al ions. The half electron charge per unit cell is transferred
to the interface TiO2 layer localizes and orders magnetically
(shown as arrows on the interface layer) via exchange polar-
ization of conduction electrons on the subsequent Ti layers
(shown as wavy cloud in Ti Layers 1 and 2). Inset: Disper-
sion of electron bands arising from 3d orbitals on Ti layers
near the interface.

charged-neutral layers. As a result of the charge dis-
continuity at the interface, an electric potential propor-
tional to the number of LaAlO3 layers is built up. This
phenomenon is termed the polar catastrophe. Since the
Ti ions allow for mixed valence charge compensation, to
avoid the polar catastrophe, half an electron per unit cell
is transferred from the surface AlO2 layer to the TiO2

across the interface. The electrons are expected to oc-
cupy the dxy orbital on the Ti atoms. Due to the rela-
tively narrow bandwidth, an on-site repulsion U and a
nearest-neighbor Coulomb repulsion V will cause these
electrons to be localized on every other interface site.
This picture of local moment formation at the interface
has been proposed before [9]. Super-exchange via the
oxygen is expected to provide a weak antiferromagnetic
exchange.

The application of a back gate or the presence of de-
fects forces more electrons to the interface. We assume
that the effect of U and V makes it too costly to place
these electrons at the interface layer. Instead, the ad-
ditional electrons mainly occupy the Ti layer next to it
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(called layer 1), and their wavefunctions spill over to lay-
ers 2 and 3 as well. We model these electrons as occu-
pying two dimensional conducting bands. These are the
electrons seen in transport measurements, with a typi-
cal areal density of 3 × 1013cm−2, or about 10% of the
density compared with the localized electrons. These
electrons initially go into the dxy band [10]. Hall ef-
fect measurements show nonlinearity in magnetic field
H with increasing gate voltage, which has been inter-
preted as the appearance of a second carrier with lower
mobility[10, 17, 18]. We assume that these are the dxz
and dyz bands, illustrated in the inset of Fig. 1. These
bands are highly anisotropic with a heavy mass in one di-
rection which may be responsible for the lower mobility.
The dxz and dyz bands are higher in energy because their
lobes point towards the negative charge at the interface
and because their bandwidths are narrower.

In addition, transport measurements show that the
elastic scattering rate 1/τ drops rapidly with increas-
ing carrier density [18]. Furthermore, from the analysis
of magnetoresistance, it was found that a Rashba term
HR = αẑ·(σ×k) grows rapidly with the gate voltage [12],
reaching a spin splitting ∆so = 2αkF of 10 meV near the
peak of the superconducting dome, a value comparable
to the Fermi energy of ≈ 40 meV. Since a back gate volt-
age tends to pull carriers from the interface, the decrease
of 1/τ is reasonable but the increase of ∆so is counter-
intuitive. We believe this trend is a consequence of in-
creasing admixture of the dxz and dyz bands with increas-
ing carrier density. The Rashba energy is determined by
the polarization of the electron wave-function due to the
asymmetric environment at the interface and the contri-
butions come mainly from near the atomic core, where
the electron is subject to a large electric field −∂V /∂z:

∆so ∝ |k‖|
2

c2

∫
dr
dV

dz
|ψk‖(r)|2 (1)

where the wavefunction ψk‖(r) =
∑
` a`φ

`
k‖

(r) and ` de-

note various angular momenta which are admixed due
to the asymmetric environment of the interface [19]. Let
us restrict ourselves to admixtures between d, p and s
states. Since ∇V ∝ ẑ, non-vanishing contributions in-
volving the d bands in Eq.(1) come only from the cross
term between dxz and px and between dyz and py. Fur-
thermore, the dxy band can have a nonzero ∆so only via
the admixture of either s and p or, more importantly of
dxz with py and dyz with px. We expect that the latter
hybridization between d and p orbitals gives rise to ∆so

that increases with chemical potential.

The final ingredient of our model is the exchange cou-
pling between the local moments and the conduction elec-
trons. We write the standard phenomenological form

HJ = JK
∑
i

∫
drŜi · ŝ(r)δ(Ri − r) (2)

where ŝ(r) = 1
2ψ
†
ασαβψβ(r) is the electron spin density

operator in the dxy band, and Ŝi is the local spin operator
on site i. We introduce a similar coupling J ′K for the dxz
and dyz bands. It is useful to introduce J0 = JK/n0

where n0 is the inverse of the interface unit cell area, and
similarly J ′0 = J ′K/n0. The Schrieffer-Wolff expression is
J0 = 2t̃2( 1

U+εd
− 1
εd

) where t̃ is the hybridization between
the local moment and the conduction band orbital and
εd < 0 is the orbital energy of the local moment relative
to the chemical potential. We note that the dxz and dyz
orbitals in layer 1 are orthogonal to the localized dxy
orbital in the interface layer, so that the hybridization t̃′

vanishes except for the admixture of other orbitals in the
dxz and dyz bands. We therefore expect J ′0 � J0.
The Origin of Ferromagnetism – We note that the

present problem is the opposite limit to the familiar prob-
lem of dilute Kondo impurities, where the Kondo screen-
ing of the local moments competes with RKKY interac-
tions between them. Here the density of local moments
ni = 1

2n0 is much greater than the conduction electron
density nc, i.e., the separation between local moments
1/
√
ni is much smaller than k−1

F . We can still view the
local moments as interacting via RKKY interactions, but
this interaction will be ferromagnetic and with a rela-
tively long range of (2kF )−1. The FM ordering tempera-
ture TF can be worked out [20] and apart from a numer-
ical constant, the result was shown to be equivalent to a
mean field treatment of HJ which we shall adopt below.
In this picture, which was introduced by Zener [21] and
referred to as the Zener kinetic exchange mechanism, the
local moments order by polarizing the conduction elec-
trons. This mechanism has been applied successfully to
explain the FM of Mn substitution in GaAs and we bor-
row the results here [22]. We introduce the average local-

ized spin order per site S = 1
Ni

∑
i〈Ŝi〉 and the average

electron density s = 1
vol

∫
dr〈ŝ(r)〉. To quadratic order

the total free energy density takes the form

Etot =
1

2

|µ0S|2

χ0
ni +

1

2

|µ0s|2

χc
+ J0

ni
n0

S · s. (3)

The last term is the mean field decoupling of Eq.(2). In

the first term χ0 = 1
3
µ2
0S(S+1)
T+θ where µ0 = gµB and S =

1/2, g = 2 in what follows, θ > 0 is the Weiss term due
to the weak AF super-exchange exchange which we shall
ignore below. In the second term χc = 1

4µ
2
0ν(0) where

ν(0) = m∗/πh̄2 is the density of states including spin
of a free electron gas. (The presence of a Rashba term
does not change the spin susceptibility of a free electron
gas [15, 23].) Minimizing Eq.(3) with respect to S leads
to a purely quadratic term in |S|2, and the sign change of
its coefficient determines the FM transition temperature

kBTF =
S(S + 1)

12
J2

0

ni
n0

ν(0)

n0
. (4)

We find that ν(0)/n0 = 0.64(m∗xy/me) eV−1. For
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m∗xy/m = 0.7, J0 = 1.3 eV will give the observed
TF ≈ 300 K. By comparison, for Mn/GaAs, J0 is ≈ 1 eV.
Here t̃ is smaller, but |εd| is also smaller because the same
orbital is involved in the local moment and the conduc-
tion electron, so the estimated J0 appears reasonable.
Thus we conclude that the Zener kinetic exchange mech-
anism can account for a robust FM state.

Next we estimate the polarization of the conduction
electron. In the mean field theory, the effect of S on the
conduction electrons is described by an effective Zeeman
field HJ ≈

∫
drµ0HMF · s(r) where HMF = J0

ni
n0

S. Li
et al.[5] reported an ordered moment of = 0.3µB per
interface unit cell, i.e., 0.6µB per local moment in our
picture, which implies |S| = 0.3. Using J0 = 1.3 eV, we
estimate a Zeeman spin splitting |µ0HMF| ≈ 200 meV,
which is comparable to or exceeds the Fermi energy. Thus
the dxy band is largely spin polarized. Since J ′0 � J0, we
expect a smaller (but still significant) polarization of the
dxz and dyz bands.

Nature of the Superconducting State – We assume
that the superconductivity originates from a conventional
electron-phonon coupling mechanism, which is modeled
by an attractive short range interaction g with a cut-off
given by the Debye frequency ωD. Since the supercon-
ducting transition temperature is Tc ≈ 0.3 K, the pairing
gap ≈ 0.04meV is the lowest energy scale in the problem.
In the dxy band we estimate a Zeeman splitting of 0.2 eV,
which exceeds the Pauli limit by more than 3 orders of
magnitude, and precludes the possibility of pairing in the
dxy band. The dxz and dyz bands will also be partially
polarized due to the exchange interaction. However, the
exchange splitting, µ0B, in these bands is expected to be
much smaller (although likely still µ0B � ∆). Moreover,
as we argue above, we expect that the Rashba spin-orbit
coupling, ∆so, is even larger in the dxz and dyz bands
than that observed in the dxy bands. It is natural to
look to strong spin-orbit coupling to preserve pairing in
the dxz and dyz bands despite large Zeeman splitting.

The enhancement of Bc due to Rashba spin-orbit cou-
pling was first demonstrated by [15] the case of weak
Rashba coupling (∆so � εF ) and no disorder, and later
by [16] for the case of weak Rashba coupling and mod-
erate disorder. They showed that an FFLO state is fa-
vored, where the pairing occurs with a finite center of
mass momentum[24]. Here we extend their analysis to
treat arbitrarily strong values of ∆so and disorder. We
begin by neglecting disorder and find the susceptibility
to form Cooper pairs at finite pair momentum q = qŷ.
The dispersion for the ± Rashba branches is: ε±k+q/2 =
(k+q/2)2

2m − µ± α
√
k2
x + (ky + q/2 + µ0B/α)2.[25] In the

physically relevant limit: vF q,B � ∆so, and we can ex-
pand in q and B:

ε±k+q/2 ≈ ε
±
k (B = 0)+(vF q/2±µ0B) sinφk+O(vF q

2, B2)

(5)
where vF =

√
α2 + 2µ/m is the Fermi-velocity for the

Rashba bands and φk = tan−1(
ky
kx

). The key is that

choosing q = 2µ0B
vF

[26] ensures ε−k+q/2 = ε−−k+q/2 +

O( B
3

∆2
so

) for all angles φk. This should be contrasted with

the usual FFLO case without spin-orbit coupling, where
the linear terms cannot be cancelled for all angles for
any choice of q. However, we cannot prevent an energy
mismatch in both bands simultaneously. By choosing
q = 2µ0Bŷ/vF we optimize for the ε− branch, which has
a larger density of states, ν−, and find:

µ0Bc ≈ ∆0 (∆so/∆0)
1+α/vF
2+α/vF (6)

where ∆0 = ωD exp
[

−1
(ν++ν−)g

]
is the superconducting

gap in the absence of the Zeeman field µ0B. In the limit
α� vF we recover the results of Barzykin and Gor’kov:
µ0Bc ≈ ∆0

√
∆so/∆0. For the oxide interface system we

expect stronger spin-orbit coupling, ∆so ≈ εF , and find
an even larger enhancement: µ0Bc ≈ ∆0(∆so/∆0)2/3.

The above calculation is only valid in very clean sys-
tems for which ∆0τ � 1. In practice, we expect to be
in the dirty limit, ∆0τ � 1. To incorporate impurity
scattering, we consider spin-less, short-ranged impurities
and compute the disorder averaged Cooper-channel sus-
ceptibility in the εF τ � 1 limit, by summing the ladder
diagrams for impurity scattering (called the Cooperon).
As shown in Fig. 2, there are 3 regimes. First, in the weak
disorder regime (τ−1 < ∆0) we find that the critical field

drops rapidly to the Pauli limit Bc ≈ ∆0(∆0τ)
1+α/vF
1−α/vF .

This can be understood as follows: as in the clean case,
the pair momentum minimizes the effect of the magnetic
field in the ε− branch, while keeping the pair breaking in
the ε+ branch. However, impurities can scatter Cooper
pairs from the − band to the + band where they rapidly
decohere. Thus, disorder enhances the dephasing effects
of the Zeeman field, which becomes fully pair breaking as
τ−1 → ∆0. On the other hand, for very strong disorder,
τ−1 � ∆so, the Rashba bands ε± lose their identifies
due to the rapid impurity scattering. Here, spin and mo-
mentum become decoupled and the problem reduces to
that of conventional parabolic bands with effective spin-
orbit scattering rate τ̃−1

so = ∆2
soτ � τ−1. This is the

D’yakonov-Perel limit where the spin diffuses in small
steps between rapid impurity scattering[27]. In this limit,
it was demonstrated in [28] that µ0Bc ≈ ∆0/

√
∆0τ̃so,

and SC occurs at q = 0.
The interesting limit is the intermediate regime ∆0 �

τ−1 � ∆so[16]. Here the disorder is weak enough that
the Rashba bands maintain their identity, but a pair in
the ε+ band can readily be scattered to a pair in the
ε− band. Unlike the weak disorder case, the pairing is
strongly admixed and it is not possible to sacrifice the
pair breaking of one band in favor of the other. On the
other hand, due to the spin-orbit coupling both spin (the
Zeeman energy) and momentum show diffusive behavior.
As a consequence, the pair breaking effect of the magnetic
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FIG. 2. Critical Zeeman splitting, Bc, measured with respect
to the bare SC gap ∆0 as a function of disorder strength
τ−1. The FFLO state identified in [15] is rapidly destroyed as
∆0τ → 1. Remarkably, for stronger disorder the FFLO state
re-emerges and Bc is enhanced beyond the Pauli limit (shown
as a dashed line).

field is weaker. The pairing interaction is dominated by
the Cooperon, C, which ordinarily develops a diffusion

pole C = 1
iω+Dq2 with D =

v2F τ
2 , but in the present case q

is replaced by q± 2µ0B
vF

for the ± bands respectively. Due
to the strong mixing of the pairing channels, the effec-
tive pair breaking strength is given by the combination:∑
λ=±

νλ
4m (vF q + λ2µ0B)

2
. Since ν+ 6= ν− this combina-

tion is minimized by finite momentum q = 4αB
α2+v2F

, and

we predict that an FFLO state exists in the intermedi-
ate regime, but with a different q from the clean case.
The corresponding Bc is: µ0Bc ≈ ∆0√

∆0τ
. Physically, on

this limit τB � τ and, unlike the weak disorder, the pair
dephasing time τ2

B/τ grows with increasing disorder.

Discussion – To summarize, we propose a model
to explain the coexistence of SC and FM observed in
STO/ALO oxide interface structures. In this model,
a half-charge per unit cell is transferred to the inter-
face layer and forms a lattice of local moments due to
Coulomb repulsion. These local moments then order fer-
romagnetically via exchange with lower-density bands of
mobile electrons residing in Ti layers near the interface.
The large FM exchange would ordinarily kill SC in these
mobile bands. However, the presence of a large spin-orbit
coupling enables the formation of an FFLO state which
can coexist with strong magnetism. In this FFLO state,
Cooper pairs form with finite pair momentum perpen-
dicular to the direction of magnetic ordering. Unlike the
usual FFLO state without spin-orbit coupling [13, 14],
spin-orbit coupling parametrically enhances Bc beyond
the Pauli limit and enables FFLO pairing to survive to
much stronger disorder (up to ∆soτ >∼ 1). Experimen-
tally, τ−1 decreases with back-gate voltage VG while si-
multaneously ∆so increases. In our picture, the observed
Tc vs VG dome is related to the behavior of Bc shown in
Fig. 2 sweeping from τ−1 > ∆so to τ−1 < ∆so.

We wish to emphasize that our model suggests that
the FM and SC occur in different bands, and are uni-
formly distributed at the interface. Another possible ex-
planation of the coexistence is in the spatial separation

of the two phases. Indeed, a recent experiment [6] shows
that the FM is arrange in domains and might not occupy
the entire interface layer. However, the large total mag-
netic moment of the system [5], implies that the domains
should occupy most of the area at the interface. The SC
order parameter, in contrast, does not go to zero at any
point in the plane.

Before concluding, we briefly discuss some experimen-
tal signatures of our model. First, if the exchange cou-
pling for the dxz and dyz bands is such that the conduc-
tion electrons polarize in the opposite direction of the
interface moments, then the external in-plane field H‖
would align the local moments alongH‖ but would reduce
the total Zeeman field seen by thedxz and dyz bands to
µ0(B−H‖). This leads to the unusual prediction that Tc
should exhibit a maximum at finite H‖. Second, one can
look for q 6= 0 pairing by creating a Josephson tunnel-
ing junction with a conventional SC film. By applying a
magnetic field parallel to the junction, Cooper pairs tun-
nel at finite momentum ∆k, and the Josephson current
would peak when ∆k = q.
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