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We describe a technique which allows a direct measurement of the relative Fermi energy in an
electron system by employing a double layer heterostructure. We illustrate this method by using
a graphene double layer to probe the Fermi energy as a function of carrier density in monolayer
graphene, at zero and in high magnetic fields. This technique allows us to determine the Fermi
velocity, Landau level spacing, and Landau level broadening. We find that the N = 0 Landau level
broadening is larger by comparison to the broadening of upper and lower Landau levels.

PACS numbers: 73.43.-f, 71.35.-y, 73.22.Gk

The Fermi energy is a fundamental property of an elec-
tron system, and thermodynamic measurements which
probe the Fermi energy or density of states are key to
understanding the host material band structure and elec-
tron interaction effects. Although a number of thermo-
dynamic properties, such as specific heat [1, 2], magne-
tization [3], magnetocapacitance [4], or compressibility
[5] can probe the density of states in an electron system,
accessing them experimentally becomes increasingly diffi-
cult at the micro- and nano-scale. In the case of graphene
[6], magnetization and specific heat measurements are ex-
ceedingly difficult, and the accuracy of compressibility [7]
and capacitance measurements [8–10] are also limited by
the reduced sample dimensions. Using a graphene dou-
ble layer heterostructure, we describe a technique which
allows a direct measurement of the Fermi energy in an
electron system with an accuracy which is independent of
the sample size. The underlying principle of the method
discussed here is that an interlayer bias applied to bring
the top layer to the charge neutrality point is equal to
the Fermi energy of the bottom layer. We illustrate
this technique by probing the Fermi energy in monolayer
graphene, both at zero and in high magnetic fields. We
show that this method allows an accurate determination
of the Fermi velocity, Landau level spacing, and Landau
level broadening in monolayer graphene.

Our samples are independently contacted graphene
double layers, consisting of two graphene single layers
separated by a thin dielectric as shown in Fig. 1(a) [11].
To fabricate such devices, we first mechanically exfoliate
the bottom graphene layer from natural graphite onto a
280 nm thick SiO2 dielectric, thermally grown on a highly
doped Si substrate. Standard e-beam lithography, Cr/Au
deposition followed by lift-off, and O2 plasma etching
are used to define a Hall bar device. A 4 to 7 nm top
Al2O3 dielectric layer is deposited on the bottom layer
by atomic layer deposition (ALD), and using evaporated
Al as a nucleation layer. The dielectric film thickness
grown on graphene is further verified by transmission
electron microscopy in multiple samples. To fabricate

the graphene top layer, a separate graphene single layer
is mechanically exfoliated on a SiO2/Si substrate. After
spin-coating polymetyl metacrylate (PMMA) on the top
layer and curing, we etch the underlying substrate with
NaOH, and detach the top layer along with the align-
ment markers captured in the PMMA membrane. The
membrane is transferred onto the bottom layer device,
and aligned. A Hall bar is subsequently defined on the
top layer, completing the double layer graphene device.
Three samples were investigated in this study, all with
similar results. We focus here on data collected from one
sample with a 7.5 nm thick interlayer dielectric, and with
an interlayer resistance larger than 1 GΩ. Both layer mo-
bilities are 10,000 cm2/V·s. Using small signal, low fre-
quency lock-in techniques we probe the layer resistivities
as a function of back-gate bias (VBG), and the inter-layer
bias (VTL) applied on the top layer. The bottom layer is
maintained grounded during measurements.
Figure 1(b,c) data show the longitudinal resistivity of

the bottom (ρB) and top (ρT ) layer measured as a func-
tion of VTL, and at different VBG values [12]. The data
ρB,T vs. VTL exhibit the ambipolar behavior charac-
teristic of graphene, and with a charge neutrality point
which is VBG-dependent. The shift of the charge neu-
trality point of the bottom layer as a function of VBG is
explained by picturing the bottom layer as a dual-gated
graphene single layer, with the Si substrate as back-gate
and the top graphene layer serving as top-gate. The de-
pendence of the ρT vs. VTL data on VBG is more subtle,
and implies an incomplete screening by the bottom layer
of the back-gate induced electric field.
We can quantitatively explain the top (nT ) and bottom

(nB) layer carrier density dependence on VBG and VTL

using a band diagram model [Figs. 1(d,e)]. An applied
VBG is the sum of the potential drop across the SiO2

dielectric and the Fermi energy of the bottom layer:

eVBG = e2(nB + nT )/CSiO2
+ EF (nB) (1)

Here, EF (n) represents the Fermi energy measured from
the charge neutrality point at a carrier density n; nB,T
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FIG. 1: (color online) (a) Schematic representation of a
graphene double layer separated by an Al2O3 dielectric, and
with a bottom SiO2 dielectric. A back-gate (VBG) and inter-
layer (VTL) bias can be applied on the Si substrate and top
layer, respectively. Lower right: optical micrograph of a
graphene double layer device. The red (blue) contour marks
the bottom (top) layer. The scale bar is 5 µm. (b,c) Layer re-
sistivities measured as a function of VTL and VBG at T = 0.4
K. (d,e) Band diagram of a graphene double layer under an
applied back-gate [panel (d)] or inter-layer [panel (e)] bias.

and EF (n) are positive when the carriers are electrons,
and negative when the carriers are holes. CSiO2

denotes
the bottom dielectric capacitance per unit area. Similarly
to Eq. (1), the applied VTL bias can be written as the
sum of the potential drop across the Al2O3 dielectric and
the Fermi energies of the two layers:

eVTL = EF (nB)− (EF (nT ) + e2nT /CAl2O3
) (2)

CAl2O3
is the inter-layer dielectric capacitance per unit

area. Figure 1 shows two examples of band diagrams in
the graphene double layer, at finite VBG and VTL = 0
V [Fig. 1(d)], as well as finite VTL and VBG = 0 V
[Fig. 1(e)]. For simplicity the back-gate Fermi energy
and the two graphene layers charge neutrality points are
assumed to be aligned at VBG = 0 V and with both

FIG. 2: (color online) (a) Contour plots of ρB (left) and ρT
(right) measured as a function of VBG and VTL, at T = 0.4
K. (b) Band diagram of a graphene double layer with the
top layer at the charge neutrality point. The inter-layer bias
is equal to the bottom layer Fermi energy. (c) Bottom layer
Fermi energy vs. carrier concentration, determined using data
of panel (a). The symbols are experimental data, while the
solid line represents the expected h̄vF

√
πnB dependence.

layers at ground potential. In Fig. 1(e) the VTL bias
is assumed to be positive, resulting in electrons (holes)
induced in the bottom (top) layer. We emphasize that no
assumptions are made with regard to the EF dependence
on nB and nT . As we show below, this dependence will
be determined experimentally.
Figure 2(a) data show contour graphs of ρB (left panel)

and ρT (right panel) as a function of VBG and VTL. The
bottom layer resistivity dependence on gate and inter-
layer bias is very similar to a dual-gated graphene mono-
layer, showing an almost linear dependence of the charge
neutrality point on VBG and VTL, with a slope equal to
the CSiO2

/CAl2O3
ratio. Using CSiO2

= 12 nF/cm2 for
the bottom SiO2 dielectric, we determine the inter-layer
dielectric capacitance to be CAl2O3

= 340 nF/cm2 [13].
The capacitance values are confirmed by Hall measure-
ments.
The top layer resistivity shows the characteristic am-

bipolar behavior as a function of VTL, but with a weaker
VBG dependence. Let us examine more closely the top
layer charge neutrality point dependence on VBG and
VTL. If we consider the top layer at the charge neutrality
point, setting nT = 0 in Eq. (2) yields:

eVTL = EF (nB) (3)

This equation contains a simple, yet remarkable result.
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The inter-layer bias required to bring the top layer at
the charge neutrality point is equal to the Fermi energy
of the opposite layer, in units of eV [Fig. 2(b)]. Con-
sequently, tracking the top layer charge neutrality point
in the VBG - VTL plane [dash-dotted trace in Fig. 2(a)
left panel], results in a measurement of the bottom layer
Fermi energy as a function of VBG. Furthermore, setting
nT = 0 in Eq. (1), and using Eq. (3) allows for nB to be
determined as a function of VBG and VTL along the top
layer charge neutrality line of Fig. 2(a):

VBG − VTL = enB/CSiO2
(4)

Equations (3) and (4) provide a direct measurement of
the bottom layer Fermi energy as a function of density.
To illustrate this, in Fig. 2(c) we show the bottom layer
Fermi energy EF,B as a function of nB, determined using
Fig. 2(a) data and Eqs. (3) and (4). The EF values are
in excellent agreement with the EF (nB) = h̄vF

√
πnB de-

pendence expected for the linear energy-momentum dis-
persion of graphene, and with an extracted Fermi velocity
of vF = 1.15× 108 cm/s.
In the following we show that the above method applies

equally well to an electron system in high magnetic fields,
allowing a direct measurement of Landau level (LL) en-
ergies and broadening. In Fig. 3(a) we show the contour
plots of ρT (top panel) and ρB (bottom panel) measured
as a function of VBG and VTL in an applied perpendic-
ular magnetic field B = 8 T. Both layers show quantum
Hall states (QHS) marked by vanishing resistivities at
filling factors ν = 4(N + 1

2
), consistent with monolayer

graphene [14, 15]. The integer N represents the Landau
level index. The top panel of Fig. 3(a) data shows a
step-like dependence of the top layer charge neutrality
point on VBG and VTL. Similarly to Fig. 2, substituting
eVTL with EF,B at the top layer charge neutrality line in
Fig. 3(a) (top panel) provides a mapping of EF,B as a
function of VBG. To visualize this, the top layer charge
neutrality line in the VBG−VTL plane is superposed with
the ρB contour plot of Fig. 3(b) (bottom panel), which
shows step-like increments of EF,B coinciding with the
bottom layer QHSs.
Figure 3(b) shows EF,B vs. nB at B = 8 T deter-

mined by tracking the top layer charge neutrality line in
the VTL−VBG plane in Fig. 3(a), and using Eqs. (3) and
(4) to convert VTL and VBG into EF,B and nB, respec-
tively. In addition, Fig. 3(b) shows ρB vs. EF,B, deter-
mined by tracking the bottom layer resistivity along the
top layer charge neutrality line [dashed-dotted line of Fig.
3(a)]. Figure 3(b) data manifestly shows the staircase-
like behavior expected for the Fermi level dependence on
density for a two-dimensional electron system in a per-
pendicular magnetic field. The peaks in the ρB vs. EF,B

data of Fig. 3(b), corresponding to the Fermi level lying
in the LL center and probing extended states, correlate
with plateaus in the EF,B vs. nB, associated with the
large LL density of states. The peaks in the ρB vs. EF,B

FIG. 3: (color online) (a) ρT (top) and ρB (bottom) con-
tour plots measured as a function of VBG and VTL at B = 8
T, and T = 0.4 K. Both layers show quantum Hall states
marked by vanishing longitudinal resistance at filling factors
ν = ±2, 6, 10, consistent with mono-layer graphene. The top
layer charge neutrality line (dashed line) shows a step-like be-
havior, with the steps matching the bottom layer quantum
Hall states. (b) ρB (blue line, top axis) vs. EF,B = eVTL,
and EF,B vs. nB (red line, bottom axis) determined from the
top layer charge neutrality line of panel (a). The EF,B values
at the peak positions of ρB provide the Landau level energies.

data of Fig. 3(b) provide a direct measurement of the
LL energy. Figure 4(a) summarizes the bottom graphene
layer LL energy as a function of index (N) at B = 8
T. The experimental data is in excellent agreement with
the theoretical dependence EN = ±vF

√

2h̄eB|N |, cor-
responding to a Fermi velocity vF = 1.17 × 108 cm/s,
a value less than 2% different than the Fermi velocity
determined at B = 0 T using Fig. 2 data.
In Figure 4(b) we compare the EF,B vs. nB data deter-

mined experimentally at B = 8 T, with calculations. As-
suming a Lorentzian distribution of the disorder-induced
LL broadening, the density of states D(E) writes:

D(E) =
4e

h
B
∑

N

1

π

γN
(E − EN )2 + γ2

N

(5)

with γN being the broadening of the N -th LL. The carrier
density (n) dependence on EF in the limit T = 0 K is:

n(EF ) =

∫ EF

0

D(E)dE (6)
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Using Eqs. (5) and (6), the best fit to EF,B vs. nB

data is obtained for γ0 = 14 meV, and γN = 6.5 meV
for |N | > 0. The summation in Eq. (5) does not con-
verge if carried out to infinity, and a high-energy cut-off
is customarily used. For the calculations of Fig. 4(b)
we used |N | ≤ 100 in Eq. (5), corresponding to a 1 eV
cut-off energy; increasing the cut-off LL index to 1,000,
will change the best fit γ value by less than 0.5 meV.
The lower inset of Fig. 4(b) shows a comparison of the
EF,B vs. nB experimental data with calculations using
the same broadening for the N = 0 LL as the upper and
lower LLs, γ = 6.5 meV. The larger broadening of the
N = 0 LL by comparison to the other LLs is an interest-
ing finding. A theoretical study [16], which examined the
impact of static disorder on LL broadening in graphene
without considering interaction showed that the N = 0
LL broadening is the same as for the other LLs. On the
other hand electron-electron interaction can impact the
broadening of the four-fold degenerate N = 0 LL, and
experimental data on exfoliated graphene on SiO2 sub-
strates show a splitting of the N = 0 LL in high, B = 45
T magnetic fields [17], explained as a many-body effect.
Lastly, we note that a Gaussian-shaped Landau levels
density of states yields worse fits to Fig. 4 data, by com-
parison to the Lorentzian shape density of states. Scan-
ning tunneling microscopy [18, 19], and compressibility
studies in graphene [7] also favor the Lorentzian LL line-
shape by comparison to the Gaussian one. A recent the-
oretical study argues that LL local density of states has
a Lorentzian lineshape while the total density of states
is Gaussian [20]. Presumably, the sample size examined
here, defined by a 4 µm Hall bar width coupled with the
8 µm top layer contact spacing is sufficiently small such
that the Lorentzian LL line-shape dominates.
In summary, we present a method to determine the

Fermi energy in a two-dimensional electron system, using
a graphene double layer heterostructure. We illustrate
this technique by probing the Fermi energy in graphene
monolayer at zero and in a high magnetic field, and de-
termine with high accuracy the Fermi velocity, Landau
level spacing and broadening.
We thank C. P. Morath and M. P. Lilly for technical

discussions. This work was supported by NRI, ONR, and
Intel. Part of this work was performed at the National
High Magnetic Field Laboratory, which is supported by
NSF (DMR-0654118), the State of Florida, and the DOE.

FIG. 4: (color online) (a) Landau level energy in monolayer
graphene as a function of index (N). The symbols are ex-
perimental data determined from the EF,B positions at the
ρB peaks in Fig. 3(b). The solid line is the theoretical

±vF
√

2h̄eB|N | dependence using vF = 1.17× 108 cm/s. (b)
EF,B vs. nB at B = 8 T. The symbols represent experimental
data, and the solid (red) line is a fit assuming a Landau level
Lorentzian line shape. The best fit is obtained for γN = 6.5
meV for |N | > 0, and γ0 = 14 meV. The upper inset shows
the calculated density of states corresponding to the best fit
to experimental data. The lower inset shows the EF vs. nB

data in the vicinity of zero density. The symbols represent
experimental data, and the lines are calculations assuming
γ0 = 6.5 meV (blue line) and γ0 = 14 meV (red line).
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