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We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quan-
tum phase transitions in strongly correlated systems. Using state of the art numerical techniques
complemented with analytical arguments, we investigate paradigmatic examples for both quantum
spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F
allows to find quantum critical points with a much better accuracy in one dimension. We further
demonstrate that F can be successfully applied to the detection of quantum criticality in higher
dimensions with no prior knowledge of the universality class of the transition. Promising approaches
to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.
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Quantum phase transitions [1] occur at zero temper-
ature and are solely driven by quantum fluctuations.
Hence it is expected that a quantum phase transition
should be manifested through the system’s entanglement
properties [2]. Identifying appropriate measures of en-
tanglement is, however, a non-trivial task. An important
tool to access and quantify the amount of entanglement
between two sub-sets A and B of an interacting quantum
system is the von Neumann entanglement entropy (EE).
In one dimension (1D), conformal field theory and exact
calculations have established the logarithmic scaling of
the von Neumann entropy [3] for critical systems. For
gapped systems the EE saturates to a constant and thus
obeys a strict area law (assuming a local Hamiltonian) [4].
In fact, EE can help to locate the quantum critical point
(QCP) in some cases [5]; for more subtile situations (e.g.
like Kosterlitz-Thouless transitions) it was demonstrated
recently that the EE failed to locate the QCP of the
frustrated J1–J2 chain [6]. In higher dimensions, it was
established that the gapless Heisenberg antiferromagnet
(AF) on a square lattice obeys a strict are law [7, 8], as
also expected for a gapped phase. In such a situation,
it is therefore unlikely that von Neumann EE will be a
useful and practical tool to detect QCPs. Conversely,
the valence bond entropy has been shown to be a pow-
erful quantity to locate QCPs in any dimension, based
on different scaling regimes, but it is restricted to SU(2)-
invariant spin systems [6, 9].

The aim of this Letter is to promote a general and more
practical quantity to precisely locate QCPs for a larger
variety of strongly correlated systems in any dimension
d. Using the concept of bipartite fluctuations [10–12]
F of particle number or magnetization in many-body
quantum systems, we focus on systems where such U(1)
charges O are globally conserved while they locally fluc-
tuate within each subsystems. We define

FA =
〈(∑

i∈A
Oi
)2〉
−
〈∑
i∈A
Oi
〉2
, (1)

where the (globally) conserved quantity O can be the
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FIG. 1: (color online). For a d-dimensional system, the fluc-
tuations F within subsystem A (of linear size L) with respect
to B provide a precise estimate to locate a QCP at λc be-
tween gapless (quasi) ordered and gapped disordered phases
with disctinct scalings with L.

particle number n or the magnetization Sz and 〈·〉 refers
to the ground state at T = 0. Oi is defined for a sub-
system A embedded in a larger one, see Fig. 1. For
the special case that A is the total system, FA is just
the susceptibility (or compressibility, respectively) di-
vided by temperature. We show for various models,
such as the spin- 12 frustrated J1 − J2 AF in 1D, the
Bose-Hubbard chain at unit filling, 2D coupled Heisen-
berg ladders, and Bose-condensed hard-core bosons on
a square lattice, that FA provides a very efficient tool
to accurately detect quantum criticality in the frame-
work of quantum Monte Carlo (QMC) and Density Ma-
trix Renormalization Group (DMRG) simulations on fi-
nite size systems [13]. The key feature of the bipartite
fluctuations is the distinct scaling behavior for gapless
and gapfull phases in any dimension d [10, 11], as sum-
marized in Fig. 1: within a sub-system of linear size L,
F exhibits a strict area law for a disordered (gapped)
ground-state, Fgapped ∝ Ld−1, whereas for a (quasi) or-
dered gapless state multiplicative logarithmic corrections
appear, Fgapless ∝ Ld−1 lnL, thus allowing to precisely
locate a QCP between two such regimes. The bipartite
fluctuations give an alternative view of the correlation
functions since they are dominated by short-range fluc-
tuations [11]. Experimentally, the concept of fluctuations
has a very strong potential [12].

One dimensional systems— We now address 1D mod-
els, governed by Kosterlitz-Thouless (KT) type quantum
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FIG. 2: (color online). Luttinger parameter K of the J1 − J2
chain extracted via (3) vs. λ ≡ J2/J1. Shown is DMRG data
for L = 100 (red squares) and 200 (black dots) for PBC.

phase transitions usually difficult to precisely locate nu-
merically. The first model we study is the frustrated
spin- 12 J1–J2 chain, governed by the Hamiltonian

H(λ) =
∑
i

(Si · Si+1 + λ Si · Si+2 ) , (2)

where J2/J1 ≡ λ ≥ 0. For λ ≤ λc, this system has
power-law critical correlations. At λc ' 0.2412, a KT
transition into a dimerized phase occurs [14, 15]. As men-
tioned above, the estimated value for the QCP using EE
is not very precise compared to the established meth-
ods [14] because the prefactor of the leading term in the
EE (i.e., the central charge c) is more or less insensi-
tive to a change of λ close to the QCP [6]. Instead, we
detect the transition by observing the behavior of F un-
der variation of the control parameter λ which triggers
the quantum phase transition. The low-energy theory
describing such a quasi-ordered state is the Tomonaga-
Luttinger liquid [15], for which [11, 12]

F(L) =
K

π2
lnL+ cst, (3)

where K = 1/2 is the Luttinger liquid parameter of this
SU(2) point. However, marginally irrelevant operators
lead to sizeable logarithmic corrections for K [16], when
computed on finite size systems. Interestingly, such cor-
rections vanish precisely at λc where K quickly reaches
its asymptotic value of 1/2. Thus we have a systematic
method at hand to detect this phase transition. In Fig. 2
we have plotted the Luttinger parameter K extracted
from finite size DMRG calculations of Eq. (3) versus λ.
For PBC and L = 100, 150, 200, and 250, and after
performing finite-size scaling, we obtain λc = 0.2412(3)
which agrees very well with the best estimates [14]. While
there are a few other techniques available to find the QCP
of the J1–J2 chain [6, 14, 17–19], our approach stands out
through efficiency and simplicity.

Another interesting model is the Bose-Hubbard chain:

H = −t
∑
〈ij〉

b†i bj +
U

2

∑
i

ni
(
ni − 1

)
−
∑
i

µni , (4)
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FIG. 3: (color online). Luttinger parameter K of Bose-
Hubbard chain extracted via (3) vs. λ ≡ t/U for L = 256
(unit filling) and OBC. We restricted the local boson occupa-
tion number to 4 [21, 22]. Inset: zoom close to the transition.

where t is the hopping amplitude, U the on-site repul-
sion, and µ the chemical potential. Away from half fill-
ing, we expect a superfluid-Mott transition triggered by
λ ≡ t/U . The superfluid phase is a Luttinger liquid [20]
with Luttinger parameter K ≥ 1. For unit filling, the
QPT from a superfluid to a Mott insulator is of KT type
(like in the J1 − J2 chain discussed above). The com-
plete (µ, t/U) phase diagram was carefully investigated
within DMRG in Refs. 21–23. Here we revisit the prob-
lem (restricted to unit filling) and show that we locate
the transition with a better accuracy by virtue of the fluc-
tuations. In the superfluid phase, the Green’s function
G(r) = 〈b†rb0〉 ∝ r−1/2K decays as a power-law. From
Luttinger liquid theory we know that the transition oc-
curs for Kc = 2, see Ref. 24. In Refs. 21, 22 the Luttinger
parameter K was extracted directly from G(r), thus giv-
ing an estimate of the critical point λc = 0.297±0.01 [22].
The major advantages of our approach is that (i) we have
a finite size formula for the fluctuations (i.e., applicabil-
ity of conformal mappings) contrary to G(r), and (ii)
the computational cost of F using DMRG (see App. C of
Ref. 12) is much lower as compared to the Green’s func-
tion at large distances. We extract K from F for OBC
with L = 64, 128, and 256 (the latter is shown in Fig.3).
By performing finite size scaling we obtain a much more
precise estimate λc = 0.2989(2), as compared to previous
works [13].

Two dimensions— Let us now move to 2D with a sys-
tem of coupled spin- 12 AF ladders, depicted in the inset
of Fig. 4 (a), and governed by the Hamiltonian

H =
∑
ladd.

Si · Sj +
∑

inter−ladd.
λSi · Sj . (5)

This model [25, 26] displays a gapped valence bond solid
(VBS) phase for small inter-ladder coupling λ < λc with
λc = 0.31407(5) [25], and a gapless Néel ordered phase
for λ > λc. Here we investigate the T = 0 fluctuations
of the total magnetization in a region A of size x × y
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FIG. 4: (color online). Quantum Monte Carlo results for T = 0 fluctuations F of the total magnetization in a region A for 2D
coupled spin- 1

2
ladders [Eq. (5)], depicted in the inset of (a). Left (a): F/L increases logarithmically with L in the Néel regime

(black squares λ = 1) whereas it saturates to a constant in the valence bond state (green circles λ = 0.1). Right (b): F/L,
plotted vs. λ for various system sizes, displays a crossing point at λc. Insets: (i) crossing of the stiffness ρs × L at λc for the
same sizes; (ii) 1/L convergence of the crossing point for F (red squares) and ρs (black circles) to the critical value (horizontal
black line) λc = 0.31407 [25].

embedded in a periodic square lattice L× L. We choose
a sub-system A with x = L/2 and y = L which contains
an even number of sites. QMC results for the T = 0 [27]
expectation of F(L/2) are shown in Fig. 4, with square
lattices size up to L × L = 104, for the isotropic square
lattice λ = 1 (Néel) and for weakly coupled ladders with
λ = 0.1 (VBS). In contrast with the entanglement (or
Rényi) entropy which displays a strict area law in the
Néel phase [7, 8] (and presumably also in the VBS phase),
the fluctuations follow a rather different scaling [8]:

F(`) ∼
{
α` ln `+ β`+ γ (Gapless NEEL)
β′`+ γ′ (Gapped VBS).

(6)

Therefore, F/` plotted for different sizes will display a
crossing point at λc, as we indeed observe in the panel
(b) of Fig. 4 where the curves F(L/2)/L are plotted for
various system sizes. The spin stiffness ρs, also known to
be a useful quantity to locate a QCP, is shown in the right
inset (ii) of Fig. 4 (b) where one sees a similar crossing for
ρs × Ld+z−2, with z = 1 and d = 2. As usual for such a
technique, a drift of the crossing point is observed with L,
as visible in the left inset (i) of Fig. 4 (b). Already known
for a few other models [26, 28], the crossing points ob-
tained from the stiffness converge very rapidly with 1/L
to the bulk value λc, whereas we found a slower conver-
gence for the estimates obtained from F/L. Despite such
effect (which may not be generic but model dependent),
we demonstrate here with this simple example that F is
a very useful quantity to locate a QCP between ordered
and disordered phases for d > 1.

One can get even more insight from the behavior of
the coefficients α and β in Eq. (6) as a function of the
inter-ladder coupling λ (see Fig. 5). The prefactor α
of the leading term ∼ L lnL in the Néel phase van-
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FIG. 5: Prefactors α and β from Eq. (6) for coupled Heisen-
berg ladders, extracted from QMC data of Fig. 4, and plotted
against λ. (a) The critical point is shown by a red circle, and
the green curve is the power-law fit indicated on the plot. (b)
The vertical dashed line signals the critical coupling λc and
the crossing point (red circle) is at βc ' 0.0835.

ishes at the critical point α ∼ (λ − λc)x, with x ' 0.7
and λc = 0.315(1), in good agreement with the value
0.31407(5) [25]. The area law term βL, displayed in
Fig. 5 (b), although certainly non-universal, exhibits a
very interesting λ-shape and passes through a maximum
βc ' 0.0835 at the critical coupling λc.

It is important to emphasize that, contrary to the stiff-
ness, a prior knowledge of any critical exponent, such as
the dynamical exponent z, is not necessary to precisely
locate the QCP. Note also that we expect the valence
bond entropy [9] to display similar crossing properties for
such a SU(2) symmetric Hamiltonian Eq. (5). In order
to illustrate further the general character of this method,
we focus now on a non-SU(2) model: hard-core bosons
on the square lattice. Governed by the Hamiltonian

H = −t
∑
〈ij〉

(
b†i bj + h.c.

)
− µ

∑
i

b†i bi , (7)
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where b are hard-core bosons operators, t the hopping
integral and µ the chemical potential, hard-core bosons
on the square lattice [29] exhibit a particle-hole symmet-
ric phase diagram at T = 0 with a Bose-condensed su-
perfluid state for |µ/t| < 4, and trivial Mott insulating
phases for |µ/t| > 4, the transition between them being in
the universality class of the diluted Bose gas with z = 2.
The Bose-condensed (U(1)-broken-symmetry) state is ex-
pected to display for F (fluctuations of the particle num-
ber) a similar scaling as the one observed for SU(2)-
broken Néel-ordered spins, whereas for the trivial Mott
insulators we simply have FMott = 0. In Fig. 6 (a) T = 0
QMC results obtained for F are shown for 4 representa-
tive values of the chemical potential. The prefactor α of
the L lnL term is plotted versus the chemical potential µ
in the right panel of Fig. 6 where we observe a very inter-
esting dome-like shape in the superfluid regime. One can
use an interesting analogy with quasi-one dimensional
systems where the Josephson type interchain tunneling
term will lock the superfluid phase difference between all
chains. The low-energy (quasi-ordered) superfluid phase
is described in terms of a single macroscopic 1D gapless
mode. For a number of chains N = L then we pre-
dict F = (KL/π2) lnL. The logarithmic scaling of F is
controlled by the Luttinger parameter K of the effective
theory. In the hydrodynamic description of a Luttinger
liquid K = π

√
κΥsf , where κ is the compressibility and

Υsf is the stiffness. This gives α =
√
κΥsf/π. A similar

quantum-hydrodynamic theory for interacting bosons is
obtained in two dimensions using the Gross-Pitaevskii
approach. Comparing the prefactor α with

√
κΥsf (ob-

tained in the same QMC simulation), as shown in Fig. 6
(b), gives a very good agreement. We find the following
result for the entire superfluid regime: α(µ) =

√
κΥsf/p

with a coefficient p ' 3.2(1). Scaling relations close to
a QCP at λc predict Υsf ∼ ξ2−d−z and κ ∼ ξz−d, thus
leading to α ∼ (λ − λc)

ν , which can be compared to
Fig. 5 (a) where the exponent x ' 0.7 is very close to
ν = 0.709(6) of the 3D Heisenberg universality class [26].

Conclusion— The concept of bipartite fluctuations of
a (strongly correlated) quantum system has been shown
for various paradigmatic condensed matter models to be
an efficient, accurate, and rather general tool to detect
quantum critical points using state of the art numerical
techniques. In contrast to the von Neumann entropy, the
fluctuations can be successfully used even in two spatial
dimensions to find the critical point. Promising paths
to directly measure the fluctuations have been proposed
recently [12]; particularly interesting proposals are quan-
tum magnets in an external magnetic field with Meissner
screens (covering region B) as well as direct measurement
of F using single atom microscopes [30]. A next step will
be to test the usefulness of this tool for unconventional
quantum criticality [31].
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