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An isolated quantum many-body system in an initial pure state will come to thermal equilibrium if it satisfies
theeigenstate thermalization hypothesis (ETH). We consider alternatives to ETH that have been proposed. We
first show that von Neumann’squantum ergodic theorem (QET) relies on an assumption that is essentially
equivalent to ETH. We also investigate whether initial states produced by a quench can lead to thermal behavior
in systems that do not obey ETH after the quench, namely, integrable systems. We find examples of this, but
only for initial states that obeyed ETH before the quench.
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Introduction and Summary of ETH: Consider an isolated
quantumN -body system with hamiltonian̂H . Let |α〉 de-
note an eigenstate of̂H with eigenvalueEα, and letÂ de-
note a few-body observable. Theeigenstate thermalization
hypothesis (ETH) states that (1) the diagonal matrix elements
Aαα = 〈α|Â|α〉 change slowly with the state, with the differ-
ence between neighboring valuesAα+1,α+1 −Aαα exponen-
tially small inN , and (2) that the off-diagonal matrix elements
Aαβ = 〈α|Â|β〉, α 6= β, are themselves exponentially small
in N [1, 2]. ETH is suggested by various results in quan-
tum chaos theory (in particular, Shnirelman’s theorem [3] and
Berry’s random-wave conjecture [4]) for systems that have a
chaotic classical limit. ETH has been verified numerically in
a wide variety of quantum many-body systems that are suf-
ficiently far (in parameter space) from points of integrability
[5–8], but it certainly does not hold in systems that are inte-
grable or near integrable [5–9].

Let |ψ(τ)〉 be the quantum state of the system at timeτ ,
given by the evolution of some initial state|ψI〉 =

∑

α Cα|α〉,

|ψ(τ)〉 = e−iĤτ/~|ψI〉 =
∑

α

Cαe
−iEατ/~|α〉, (1)

with
∑

α |Cα|
2 = 1. The energy of the system is̄E =

∑

α |Cα|
2Eα, and the quantum energy uncertainty is∆E,

where(∆E)2 =
∑

α |Cα|
2(Eα − Ē)2. We assume that∆E

is algebraically small inN , (e.g.,∆E ∼ N−1/2Ē), as is the
case for any state of a macroscopic system that could be real-
istically prepared in a laboratory. (This is also true for theo-
retical models in which the initial state is provided by a sud-
den quench in Hamiltonians with short-range interactions [5].)
The time-dependent expectation value ofÂ is

〈Â(τ)〉 = 〈ψ(τ)|Â|ψ(τ)〉 (2)

=
∑

α

|Cα|
2Aαα +

∑

α6=β

C∗
αCβe

i(Eα−Eβ)τ/~Aαβ ,

and the long-time average of〈Â(τ)〉 is

A = lim
τ→∞

1

τ

∫ τ

0

dt 〈Â(τ)〉 =
∑

α

|Cα|
2Aαα, (3)

in the absence of degeneracies (which are not expected to oc-
cur in chaotic systems without extra symmetries [10]). The

right-hand side of Eq. (3) effectively sums|Cα|
2Aαα over an

energy window of width∆E that is centered on̄E. Accord-
ing to ETH,Aαα is approximately constant over this window.
Thus, up to algebraically small corrections, the right-hand side
of Eq. (3) has the same value as the microcanonical average
of Â over the same window, and is independent of the detailed
pattern of values taken by the|Cα|

2 coefficients. Thus ETH
results in the equality of time averages and thermal averages
for a very broad class of initial states.

From ETH, each term in the second sum in Eq. (2) is ex-
ponentially small inN . However, the number of terms in this
sum is exponentially large, and so, if the phases line up co-
herently, the second sum can rival the first. If this happens
at one particular time (say,τ = 0), it will fail at sufficiently
large later times, as the time-dependent phases go out of align-
ment. This dephasing mechanism accounts for the approach
to thermal equilibrium for an initially out-of-equilibrium state
[2, 5].

The Quantum Ergodic Theorem: In 1929, von Neumann
proved a mathematical result which has been dubbed the
quantum ergodic theorem (QET) [11]. An exegesis of it has
been given by Goldsteinet al. (hereafter GLTZ) [12]. GLTZ
summarize QET, or “normal typicallity” as it has been more
recently known, as follows: “for a typical finite family of com-
muting macroscopic observables, every initial wave function
from a micro-canonical energy shell so evolves that for most
times τ in the long run, the joint probability distribution of
these observables obtained from|ψ(τ)〉 is close to their micro-
canonical distribution” [12]. More specifically, QET states
that〈Â(τ)〉 will be close to the microcanonical average ofÂ
in the following sense:|〈Â(τ)〉−〈Â〉mc|

2 < ǫ2〈Â2〉mc for all
but a fractionδ of timest, where the subscript mc denotes the
microcanonical average over the energy window of all states
with nonzeroCα, andǫ andδ are small numbers. The proof
of the theorem requires that all energy eigenvalue differences
Eα − Eβ be nondegenerate, and an additional condition that
is deemed “technical” by GLTZ, their Eq. (17). Here we point
out that this condition is equivalent to ETH. Hence, von Neu-
mann’s proof of QET relies on ETH [13].

We follow the exposition of GLTZ, and consider the system
to have a Hilbert spaceH with an exponentially large but fi-
nite dimensionD. We focus on a single observablêA. GLTZ
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partition the Hilbert space into “macro-spaces”Hν , with di-
mensiondν . EachHν is spanned by the eigenstates ofÂ
with eigenvaluea in a particular range centered on a value
aν . Let P̂ν be the projection operator ontoHν , and consider
its energy-basis matrix elements〈α|P̂ν |β〉. The condition that
must be assumed to prove QET is that, for eachν, the off-
diagonal elements (α 6= β) must be exponentially small, and
the diagonal elements〈α|P̂ν |α〉 must be exponentially close
to fν = dν/D, the fraction of states inHν [11, 12].

We now argue that this condition is effectively equivalent
to ETH. Consider the operator̂Acg ≡

∑

ν aνP̂ν . This is a
coarse-grained version of̂A itself, which can be written as
Â =

∑

a a|a〉〈a|; Âcg is the same, but with the individual
values ofa replaced by their average values in each macro-
space. The intention of von Neumann and GLTZ is thatÂcg

should be indistinguishable from̂A in practical experiments.
Next, consider the energy-basis expectation value〈α|Âcg|α〉.
Since〈α|P̂ν |α〉 is (by the GLTZ technical condition) expo-
nentially close tofν , then from the definition of̂Acg we get
〈α|Âcg|α〉 =

∑

ν aνfν , up to exponentially small corrections.
Up to the additional small errors introduced by the coarse
graining (which are assumed to be negligible), this last ex-
pression is equal to the trace of̂A, which in this simplified
model is to be identified with the microcanonical average of
Â. This is equivalent to the ETH statement that an energy-
basis expectation value is equivalent to a microcanonical av-
erage. Similarly, if〈α|P̂ν |β〉 is exponentially small forα 6= β,
so is〈α|Â|β〉, which is the other key part of ETH [2, 5].

Another way to phrase the equivalence is to note that both
the GLTZ technical condition and ETH rely on exponential
smallness of the overlap between an energy eigenstate and an
eigenstate of an observablêA that exhibits thermal behavior.
As already noted, ETH can be justified by various results from
quantum chaos theory. Thus, ETH provides a physical basis
for the technical condition needed by QET. This results in a
unification of two formerly disparate schools of thought on
the foundations of statistical mechanics.

Quantum Quenches: As mentioned in the introduction,
ETH has been shown to be satisfied in a variety of nonin-
tegrable quantum systems. It has been found to breakdown
only as one approaches integrable points [6–8], or in special
regimes that are dominated by finite size effects,e.g., close
to the atomic limit [14, 15]. Thermalization itself has been
shown to be robust in nonintegrable systems after a (sudden)
quench, once again, failing to occur close to integrable points
[6, 16, 17] or the atomic limit [15, 18], and in localized disor-
dered systems [19]. Here, by (sudden) quench, we mean that
the system is prepared in an eigenstate of some initial Hamil-
tonian (not necessarily the ground state) and then atτ = 0 the
Hamiltonian is changed.

We now consider systems that do not satisfy ETH; in partic-
ular, we consider systems for whichAαα varies significantly
[that is, by an amount that isO(N0)] with α. It is easy to
construct such systems; for example, any set of noninteract-
ing degrees of freedom, witĥA corresponding to any one- or

few-body observable, is in this class. Interacting systemsthat
are integrable (with as many conserved charges as degrees of
freedom) are in this class [20]. Equation (3) still applies to
such systems; but now whether or notA is close to the ther-
mal average of̂A depends strongly on the initial state, which
is specified by theCα coefficients. If the values of the co-
efficients|Cα|

2 in Eq. (3) provide anunbiased sampling of
the matrix elementsAαα, then we can expectA to be alge-
braically close to the microcanonical average ofÂ over the
energy window specified by the∆E of the initial state.

The above scenario, however, does not occur in quenches
between integrable systems, i.e., when the initial state isan
eigenstate of an integrable system, and the time evolution
is studied after changing some parameters in the Hamilto-
nian while keeping the system integrable. Studies of several
models have shown thatA remains different from the ther-
mal expectation as one approaches the thermodynamic limit
[9, 21–34]. Even some special initial states that were seen to
lead toA similar to the ones predicted in thermal equilibrium
[9, 21, 28], have been recently shown not to result in the ther-
malizationÂ in the thermodynamic limit [32, 34].

Here we identify a class of initial states that leads to ther-
mal behavior after a quench to an integrable point. The initial
states we consider are eigenstates of an initial Hamiltonian
ĤI that is nonintegrable. This Hamiltonian is constructed by
breaking the integrability of the final Hamiltonian̂HF ; i.e., we
setĤI = ĤF + “integrability breaking terms”. The idea here
is that the integrability breaking terms in the initial Hamilto-
nian generate eigenstates that are unbiased combinations of
eigenstates of the integrable (final) Hamiltonian. This is what
leads to chaotic behavior as one departs from an integrable
point [7], and ultimately allows ETH to be valid in noninte-
grable systems. Hence, such initial states enable the desired
unbiased sampling that is not provided by eigenstates of inte-
grable systems.

In order to show that this is indeed the case, we have stud-
ied one-dimensional lattice systems of hard-core bosons and
spinless fermions with the Hamiltonian

H =

L
∑

j=1

[

−t
(

ĉ†j ĉj+1 + H.c.
)

− t′
(

ĉ†j ĉj+2 + H.c.
)

+

V
(

n̂j −
1
2

)(

n̂j+1 −
1
2

)

+ V ′
(

n̂j −
1
2

)(

n̂j+2 −
1
2

)]

, (4)

where ĉ†j (ĉj) stands for the creation (annihilation) operator

for hard-core bosons and fermions,n̂j = ĉ†j ĉj is the site occu-
pation operator,L is the number of lattice sites, andt (t′) and
V (V ′) are the nearest (next-nearest) neighbor hopping and in-
teraction, respectively. Thet′, V ′ terms are the ones that make
this Hamiltonian nonintegrable. We consider periodic bound-
ary conditions, and the full diagonalization of the Hamiltonian
is done using its translational symmetry. The filling is always
taken to beN = L/3.

Our quench protocol is then as follows, we generate an ini-
tial state|ψI〉 that is an eigenstate of Eq. (4) witht = V = 1
(this sets our energy scale),t′ = V ′ 6= 0, and which lies
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FIG. 1. Time evolution ofδnk, after a sudden quench, for hard-core
bosons (left panels) and spinless fermions (right panels) in lattices
with L = 21 andL = 24 (N = L/3), andT = 3. Results are
presented for quenches fromt′ = V ′

= 0.04 (a),(e),t′ = V ′
= 0.16

(b),(f), t′ = V ′
= 0.32 (c),(g), andt′ = V ′

= 0.64 (d),(h), to
t′ = V ′

= 0. In all casest = V = 1 before and after the quench.

within the sector of zero total momentum. The final Hamil-
tonian, after the quench, still hast = V = 1, but we
set t′ = V ′ = 0. This Hamiltonian is integrable. We
then study the relaxation dynamics of various observables,
as well as their description after relaxation, for many dif-
ferent initial states. These initial states are eigenstates of
Hamiltonians with different values oft′, V ′, and are selected
so that the system can have different final effective temper-
atures. The effective temperatureT is calculated using the
standard procedure for the canonical ensemble, i.e., such that
E = Z−1Tr(ĤF e

−ĤF /kBT ), whereE = 〈ψI |ĤF |ψI〉 is the
energy of the time evolving state,Z = Tr(e−ĤF /kBT ) is the
partition function, andkB (set to one in what follows) is the
Boltzman constant.

We have studied four observables, the kinetic energyK̂, the
interaction energŷU , the momentum distribution function̂nk

(which is the Fourier transform of the one-particle correlations
ρ̂ij = ĉ†i ĉj), and the structure factor̂Nk (which the Fourier

transform of the density-density correlationsN̂ij = n̂in̂j). K̂
and Û are local observables whilênk andN̂k are nonlocal,
andK̂ and n̂k are single-body observables whilêU andN̂k

are two-body observables. In all cases studied, we found a
similar qualitative behavior in those four quantities. Hence,
we will only report results for̂nk, which is the one with the
closest connection to ultracold gases experiments [35–38].

We are first interested in understanding how is it that, given
our quench protocol, observables relax (if they do) to the long-
time average in Eq. (3). For̂nk, this can be conveniently quan-
tified by calculating the normalized integrated difference

δnk(τ) =

∑

k |〈n̂k(τ)〉 − nk|
∑

k nk
. (5)

Results forδnk(τ) are shown in Fig. 1 for bosons (left col-
umn) and fermions (right column) and for two different sys-
tem sizes. For very small quenches [Fig. 1(a),(e)], the initial
state has a nonzero overlap only with very few close by eigen-
states of the final Hamiltonian. Because of this, the initial
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FIG. 2. Relative difference betweennk as predicted by the micro-
canonical ensemble and the long-time average, as a functionof t′, V ′

in the initial Hamiltonian. Results are reported for hard-core bosons
(a) and spinless fermions (b), for lattices with 24 sites (main panels)
and 21 sites (insets). In all systems, we considered five different ini-
tial states that resulted in five effective temperatures after the quench
(T = 2, 3, 5, 7, and 10 in the plots).

nk is close to the long-time average, and large oscillations
(relative to the time average) can be seen for both bosons
and fermions. By increasing the amplitude of the quench,
the initial momentum distribution becomes increasingly dif-
ferent from the long-time average, and the time fluctuations
decrease. This is because more eigenstates of the final Hamil-
tonian are involved in the dynamics and dephasing becomes
more efficient. It is interesting to note the strikingly large
finite size effects seen for the spinless fermions [Fig. 1(e)–
(g)], where the dynamics changes (improves) dramatically by
increasing the system size fromL = 21 to L = 24 [6, 7].
Overall, one can conclude from those results that, as the sys-
tem size increases,nk relaxes to the long-time average rather
quickly (τ ∼ ~/t), and the time fluctuations around that aver-
age become very small. Similar results were found for other
observables and effective temperatures.

We then are left to check how accurate statistical ensem-
bles are when predictingnk. For our small finite systems, we
use the microcanonical ensemble, and calculate the following
normalized integrated difference to quantify its accuracy

∆nk =

∑

k |〈n̂k〉mc − nk|
∑

k nk
. (6)

The width∆E of the energy window in the microcanonical
ensemble is taken such that the results are robust to small
changes of∆E (in our systems∆E ∼0.1–0.3).

Figure 2 depicts our results for∆nk, calculated for bosons
(a) and fermions (b), and forL = 24 (main panels) and
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FIG. 3. Normalized IPR (see text) for the same quenches depicted in
Fig. 2. Results for hard-core bosons (fermions) are shown inthe left
(right) panels, and forL = 21 (L = 24) in the top (bottom) panels.

L = 21 (insets). In that figure, it is apparent that∆nk is
nonzero, and large, even in the absence of a quench (when
t′ = V ′ = 0 in the initial and final Hamiltonian). This reflects
the failure of ETH due to integrability. However, as the value
of t′, V ′ is increased,∆nk is seen to decrease in all cases.
This can be seen for bosons and fermions at all effective tem-
peratures and in all system sizes. For all observables and ef-
fective temperatures that we have studied, we have found that
∆nk decreases with increasing system size. This, together
with the understanding of the role of the integrability break-
ing terms in the initial Hamiltonian, supports our expectation
that initial states that satisfy ETH (eigenstates of a noninte-
grable Hamiltonian) will lead to thermalization in integrable
systems, despite the fact that the latter do not satisfy ETH.

In Fig. 2, one can also see that, in many instances,∆nk

for a fixed system size reaches a minimum value and then in-
creases ast′ andV ′ are increased. This occur because, for
large values oft′, V ′, the initial state starts having large over-
laps with eigenstates outside the microcanonical energy win-
dow. Hence, even though the initial state is sampling more
eigenstates of the final Hamiltonian, the energy density be-
comes broad and the microcanonical ensemble once again be-
comes a bad approximation for the long-time average. The
fact that more eigenstates of the final Hamiltonian are part of
the initial state can be quantified by means of the inverse par-
ticipation ratio (IPR) IPR= 1/

∑

α |Cα|
4. This quantity has

been shown to increase in eigenstates of nonintegrable many-
body Hamiltonians as one departs from an integrable point
[7]. On the other hand, the fact that the weight of the ini-
tial state within the microcanonical window decreases if the
value oft′, V ′ becomes too large can be quantified calculat-
ing W =

∑

α′ |Cα′ |2, where only eigenstatesα′ inside the
microcanonical window are added.

Then, one can compute a “normalized IPR”, which is the
product of the IPR andW . For finite systems, this quantity
can tell us how effectivet′, V ′ are in sampling states within
the microcanonical window. Results for this quantity are de-
picted in Fig. 3, for the same quenches depicted in Fig. 2.

Figure 3 shows that, in the region where∆nk exhibits a sharp
decrease in Fig. 2, the normalized IPR increases. In addition,
where∆nk saturates or increases in Fig. 2, the normalized
IPR saturates or decreases in Fig. 3. This allows one to un-
derstand the overall behavior of∆nk in Fig. 2. However, we
should stress that the fact thatt′, V ′ (or whatever other term is
used to break integrability) cannot be made too large is only
a concern for finite systems. As long as these terms are kept
O(N0) and the interactions have finite range, the energy width
of any initial state after the quench will vanish in the thermo-
dynamic limit [5], and the initial state will only sample states
within the microcanonical window.

Conclusions: In this paper we have further probed the role
of the eigenstate thermalization hypothesis (ETH) as the key
dynamical feature of systems that come to thermal equilib-
rium. We have shown that von Neumann’s quantum ergodic
theorem (QET) relies on a technical assumption that is in
fact essentially equivalent to ETH. We have also examined
whether thermal behavior can emerge in systems that do not
obey ETH when the initial state is produced by a quench. We
have found that this is possible, but only for a class of eigen-
states that obeyed ETH before the quench. These results fur-
ther support the fundamental role of ETH in thermal behavior
of quantum many-body systems.
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