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An isolated quantum many-body system in an initial puresstall come to thermal equilibrium if it satisfies
the eigenstate thermalization hypothesis (ETH). We consider alternatives to ETH that have been preghogve
first show that von Neumannguantum ergodic theorem (QET) relies on an assumption that is essentially
equivalent to ETH. We also investigate whether initialestgiroduced by a quench can lead to thermal behavior
in systems that do not obey ETH after the quench, namelygrialbde systems. We find examples of this, but
only for initial states that obeyed ETH before the quench.

PACS numbers: 05.70.Ln,05.30.-d,02.30.1k,03.75.-b

Introduction and Summary of ETH: Consider an isolated right-hand side of Eq. (3) effectively suns,,|2A,. over an
quantumN-body system with hamiltonia/. Let |a) de-  energy window of widthAE that is centered oiv. Accord-
note an eigenstate df with eigenvalueE,, and letA de-  ingto ETH, A, is approximately constant over this window.
note a few-body observable. Tleggenstate thermalization ~ Thus, up to algebraically small corrections, the rightdhside
hypothesis (ETH) states that (1) the diagonal matrix elementsof Eq. (3) has the same value as the microcanonical average
Ana = (a|A|o) change slowly with the state, with the differ- of A over the same window, and is independent of the detailed
ence between neighboring valuds ;1 .+1 — 4. €Xponen-  pattern of values taken by thé, | coefficients. Thus ETH
tially small in IV, and (2) that the off-diagonal matrix elements results in the equality of time averages and thermal average
Aap = (aA|B), a # B, are themselves exponentially small for a very broad class of initial states.
in N [1, 2]. ETH is suggested by various results in quan- From ETH, each term in the second sum in Eq. (2) is ex-
tum chaos theory (in particular, Shnirelman’s theorem 8] a ponentially small inV. However, the number of terms in this
Berry’s random-wave conjecture [4]) for systems that have aum is exponentially large, and so, if the phases line up co-
chaotic classical limit. ETH has been verified numericatly i herently, the second sum can rival the first. If this happens
a wide variety of quantum many-body systems that are sufat one particular time (say, = 0), it will fail at sufficiently
ficiently far (in parameter space) from points of integripil large later times, as the time-dependent phases go ougat ali
[5-8], but it certainly does not hold in systems that are-inte ment. This dephasing mechanism accounts for the approach

grable or near integrable [5-9]. to thermal equilibrium for an initially out-of-equilibriu state
Let |1 (7)) be the quantum state of the system at time [2, 5].
given by the evolution of some initial state;) = >, Calav), The Quantum Ergodic Theorem: In 1929, von Neumann

. , proved a mathematical result which has been dubbed the
(7)) = e Py =3 " CoeP/Pla), (1) quantum ergodic theorem (QET) [11]. An exegesis of it has
o been given by Goldsteie al. (hereafter GLTZ) [12]. GLTZ
with 3 |Co|> = 1. The energy of the system & = summarize QET, or “normal typicallity” as it has been more
., |Cal?Eq, and the quantum energy uncertaintyAs?, recently known, as follows: “for a typical finite family of oo
where(AE)? = 3 |Col?(Es — E)?. We assume thah E muting macroscopic observables, every initial wave fuorcti
is algebraically small inV, (e.g.,AE ~ N~/2E), as is the from a micro-canonical energy shell so evolves that for most
case for any state of a macroscopic system that could be redimes 7 in the long run, the joint probability distribution of
istically prepared in a laboratory. (This is also true foedh  these observables obtained frantr)) is close to their micro-
retical models in which the initial state is provided by a-sud canonical distribution” [12]. More specifically, QET state
den quench in Hamiltonians with short-range interactiéhg [~ that (A4 (7)) will be close to the microcanonical average/bf

The time-dependent expectation valuelois in the following sensef(A(7)) — (A)me|* < €2(A?). for all
N N but a fractiony of timest, where the subscript mc denotes the
(A(r)) = (M)Al (7)) (2 microcanonical average over the energy window of all states
= Z |Co|?Ana + Z CrCgel BamE)T/h A o with nonzeroC,,, ande and¢ are small numbers. The proof
a#p of the theorem requires that all energy eigenvalue diffeesn

E, — E3 be nondegenerate, and an additional condition that
is deemed “technical” by GLTZ, their Eq. (17). Here we point
— 1 ) out that this condition is equivalent to ETH. Hence, von Neu-
A= lim — / dt (A(T)) =Y |Cal*Aaas () mann’s proof of QET relies on ETH [13].
0 @ We follow the exposition of GLTZ, and consider the system
in the absence of degeneracies (which are not expected to o have a Hilbert spacg with an exponentially large but fi-
cur in chaotic systems without extra symmetries [10]). Thenite dimensionD. We focus on a single observable GLTZ

and the long-time average @fi(7)) is



partition the Hilbert space into “macro-spacés$,, with di-  few-body observable, is in this class. Interacting systtras
mensiond,. Each#, is spanned by the eigenstates.of are integrable (with as many conserved charges as degrees of
with eigenvalues in a particular range centered on a valuefreedom) are in this class [20]. Equation (3) still applies t

a,. Let P, be the projection operator onfg,, and consider such systems; but now whether or nbis close to the ther-

its energy-basis matrix elemer(ts|ﬁl,|5). The conditionthat mal average ofi depends strongly on the initial state, which
must be assumed to prove QET is that, for eachhe off- s specified by the”,, coefficients. If the values of the co-
diagonal elementsy(# 3) must be exponentially small, and efficients|C,, | in Eq. (3) provide arunbiased sampling of

the diagonal elemenl<$y|15,,|a> must be exponentially close the matrix elementsl,, then we can expect to be alge-

to f, = d, /D, the fraction of states i, [11, 12]. braically close to the microcanonical average/obver the
We now argue that this condition is effectively equivalentenergy window specified by th& £’ of the initial state.
to ETH. Consider the operatot., = ) a,P,. Thisis a The above scenario, however, does not occur in quenches

coarse-grained version of itself, which can be written as between integrable systems, i.e., when the initial stasmnis
A= S ala){al; Acg is the same. but with the individual €i9€nstate of an integrable system, and the time evolution
values ofa replaced by their average values in each macroiS Studied after changing some parameters in the Hamilto-

space. The intention of von Neumann and GLTZ is tﬁ@gt nian while keeping the system integrable. Studies of sévera
should be indistinguishable fron in practical experiments. models have shown that remains different from the ther-

Next, consider the energy-basis expectation vadueicg|a>. mal expectation as one approa_ch(.es the thermodynamic limit

. - . . L [9, 21-34]. Even some special initial states that were seen t
Since(«|P,|a) is (by the GLTZ technical condition) expo- lead toA simil h dicted in th | ilibri
nentially close tof,, then from the definition ofi., we get ead toA similar to the ones predicted in therma equibriim

. v ) 8 i [9, 21, 28], have been recently shown not to result in the ther

(alAcgla) =3, av fu, upto exponentially small corrections. \aji7ation A in the thermodynamic limit [32, 34].
Up to the ahc_idr;tlonal small edrrorsblntrodlL_lc%cli by ghelcoarse Here we identify a class of initial states that leads to ther-
graining (which are assumed to be negligible), this last Xy, nehavior after a quench to an integrable point. Theainiti
pression is equal to the trace df which in this simplified 5165 we consider are eigenstates of an initial Hamiltonia

model is to be identified with the microcanonical average ofy 4t i nonintegrable. This Hamiltonian is constructed by
A, Th|s IS equwalent to.the ETH statement. that an e_nergybreakingthe integrability of the final Hamiltonidhy; i.e., we
basis expectation value is equivalent to a microcanonical a setF f

e o . ) H; = Hp + “integrability breaking terms”. The idea here
erage. Similarly, ifa| , | 5) is exponentially small fon # 5, i that the integrability breaking terms in the initial Hioi
so is{a|A|B), which is the other key part of ETH [2, 5].

nian generate eigenstates that are unbiased combinafions o

Another way to phrase the equivalence is to note that bot@igenstates of the integrable (final) Hamiltonian. This ety
the GLTZ technical condition and ETH rely on exponential jeads to chaotic behavior as one departs from an integrable
smallness of the overlap between an energy eigenstate and gint [7], and ultimately allows ETH to be valid in noninte-
eigenstate of an observabfethat exhibits thermal behavior. grable systems. Hence, such initial states enable theedesir
As already noted, ETH can be justified by various results fromnhiased sampling that is not provided by eigenstates of inte-
quantum chaos theory. Thus, ETH provides a physical basigrable systems.
for the technical condition needed by QET This results in a In order to show that this is indeed the case, we have stud-
unification of two formerly disparate schools of thought onjed one-dimensional lattice systems of hard-core bosods an
the foundations of statistical mechanics. spinless fermions with the Hamiltonian

Quantum Quenches: As mentioned in the introduction,
ETH has been shown to be satisfied in a variety of nonin- H
tegrable quantum systems. It has been found to breakdown
only as one approaches integrable points [6—8], or in specia
regimes that are dominated by finite size effeetg,, close V(ﬁj - %) (ﬁjﬂ - %) +V’ (m — %) (ﬁj+2 — %)}, (4)
to the atomic limit [14, 15]. Thermalization itself has been
shown to be robust in nonintegrable systems after a (suddem)hereé} (¢;) stands for the creation (annihilation) operator
quench, once again, failing to occur close to integrablefsoi - for hard-core bosons and fermiorig, = ¢'¢; is the site occu-
[6, 16, 17] or the atomic limit [15, 18], and in localized diso  pation operatotL. is the number of lattice sites, andt’) and
dered systems [19]. Here, by (sudden) quench, we mean th@t (1) are the nearest (next-nearest) neighbor hopping and in-
the system is prepared in an eigenstate of some initial Hamikeraction, respectively. Th& V' terms are the ones that make
tonian (not necessarily the ground state) and thenrat) the  this Hamiltonian nonintegrable. We consider periodic tbun
Hamiltonian is changed. ary conditions, and the full diagonalization of the Hamiim

We now consider systems that do not satisfy ETH; in particis done using its translational symmetry. The filling is afa/a
ular, we consider systems for which,,, varies significantly taken to beV = L/3.
[that is, by an amount that i©(/N?)] with «. It is easy to Our quench protocol is then as follows, we generate an ini-
construct such systems; for example, any set of noninteractial state|¢);) that is an eigenstate of Eq. (4) with=1 =1
ing degrees of freedom, witA corresponding to any one- or (this sets our energy scale), = V' # 0, and which lies

[—t(lej 0 +He) = ¢ (le 0 +HE) +

-

j=1
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FIG. 1. Time evolution obny, after a sudden quench, for hard-core
bosons (left panels) and spinless fermions (right panelfttices , _ (b) Fermions
with L = 21 andL = 24 (N = L/3), andT = 3. Results are
presented for quenches fram= V' = 0.04 (a),(e),t' = V' = 0.16
(b),(f, ' = V' = 0.32 (c),(g), andt’ = V' = 0.64 (d),(h), to
t' =V’ =0. Inall caseg = V = 1 before and after the quench.

within the sector of zero total momentum. The final Hamil- o 0.25 05 075 1
tonian, after the quench, still has = V = 1, but we .V
sett/ = V’/ = 0. This Hamiltonian is integrable. We

. . . FIG. 2. Relative difference betweer, as predicted by the micro-
then study the relaxation dynamics of various observableg,anonical ensemble and the long-time average, as a furadttény’
as well as their description after relaxation, for many dif-in the initial Hamiltonian. Results are reported for hamecbosons
ferent initial states. These initial states are eigenstafe (a) and spinless fermions (b), for lattices with 24 sitesi(npanels)
Hamiltonians with different values df, I/, and are selected and 21 sites (insets). In all systems, we considered fivereifit ini-
so that the system can have different final effective temperﬂa“ states that resulted i.n five effective temperaturesr dffie quench
atures. The effective temperatufeis calculated using the (' =2 3,5, 7.and 10in the plots).

standard procedure for the canonical ensemble, i.e., sath t

E = Z7'Tt(Hpe Hr/ksT) whereE = (¢r|Hr|r) isthe 5, is close to the long-time average, and large oscillations
energy of the time evolving stat&, = Tr(e~"#/*2T) jsthe  (relative to the time average) can be seen for both bosons
partition function, and:s (set to one in what follows) is the and fermions. By increasing the amplitude of the quench,
Boltzman constant. the initial momentum distribution becomes increasingly di
We have studied four observables, the kinetic enéfgthe  ferent from the long-time average, and the time fluctuations
interaction energy/, the momentum distribution functiow, decrease. This is because more eigenstates of the final-Hamil
(which is the Fourier transform of the one-particle cortielas  tonian are involved in the dynamics and dephasing becomes
pij = AZTéj), and the structure facta¥,, (which the Fourier more efficient. It is interesting to note the strikingly larg
transform of the density-density correlatiaNs, = 7,72,). kK finite size effects seen for the spinless fermions [Fig.-1(e)
and U are local observables while, and N, are nonlocal, (9)]; where the dynamics changes (improves) dramaticgily b
and K andiy, are single-body observables whileand v, ~ Increasing the system size from = 21 to L = 24 [6, 7].

are two-body observables. In all cases studied, we found &Verall, one can conclude from those results that, as the sys
similar qualitative behavior in those four quantities. lden (€M Size increases,; relaxes to the long-time average rather

we will only report results fori,, which is the one with the AUiCKly (7 ~ 72/t), and the time fluctuations around that aver-
closest connection to ultracold gases experiments [35-38] 29€ become very small. Similar results were found for other

We are first interested in understanding how is it that, giverPPServables and effective temperatures. o
our quench protocol, observables relax (if they do) to theo We then are left to check how accurate statistical ensem-

time average in Eq. (3). Far,, this can be conveniently quan- bles are vv_hen prediptin@. For our small finite systems, we
tified by calculating the normalized integrated difference ~ US€ the microcanonical ensemble, and calculate the folpwi
normalized integrated difference to quantify its accuracy

_ g ((T)) — Mg A Yme — T
Snp(r) = =k zk:kn_k ki (5) Ank_Zsz:kjn_k k|' ©)

Results forin(7) are shown in Fig. 1 for bosons (left col- The width AE of the energy window in the microcanonical
umn) and fermions (right column) and for two different sys- ensemble is taken such that the results are robust to small
tem sizes. For very small quenches [Fig. 1(a),(e)], théainit changes oA E (in our system&\E ~0.1-0.3).
state has a nonzero overlap only with very few close by eigen- Figure 2 depicts our results fdkny, calculated for bosons
states of the final Hamiltonian. Because of this, the initial(a) and fermions (b), and fof = 24 (main panels) and
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used to break integrability) cannot be made too large is only
a concern for finite systems. As long as these terms are kept
O(NY) and the interactions have finite range, the energy width

100r

a1
o
T

o 150 @ Bosons ©) Formionse— T30 Figure 3 shows that, in the region wheke;, exhibits a sharp

= 1000 L=o1 1 =a T=30 | decrease in Fig. 2, the normalized IPR increases. In additio
3 I P where An, saturates or increases in Fig. 2, the normalized
g 5ol }xﬁ/\ L AL - T=100] IPR saturates or decreases in Fig. 3. This allows one to un-
S A }fv L~ 1 derstand the overall behavior Afn;, in Fig. 2. However, we

o 0 ) ~ should stress that the fact thtatV’ (or whatever other term is
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L] of any initial state after the quench will vanish in the therm
O —L — 4 : — dynamic limit [5], and the initial state will only sample &a
0 025 05 075 Q@ 025 05 075 1 " . . ;
tv t v within the microcanonical window.
FIG. 3. Normalized IPR (see text) for the same quenches tizpic Conclusions: In this paper we have further probed the role

Fig. 2. Results for hard-core bosons (fermions) are shovinarieft ~ Of the eigenstate thermalization hypothesis (ETH) as tlye ke
(right) panels, and fof. = 21 (L = 24) in the top (bottom) panels.  dynamical feature of systems that come to thermal equilib-

rium. We have shown that von Neumann’s quantum ergodic
theorem (QET) relies on a technical assumption that is in
L = 21 (insets). In that figure, it is apparent thAt, is fact essentially equivalent to ETH. We have also examined

nonzero, and large, even in the absence of a quench (wh&i€ther thermal behavior can emerge in systems that do not
# = V' = 0in the initial and final Hamiltonian). This reflects ©P€y ETH when the initial state is produced by a quench. We

the failure of ETH due to integrability. However, as the walu have found that this is possible, but only for a class of eigen
of /. V" is increasedAn,, is seen to decrease in all cases. States that obeyed ETH before the quench. These results fur-

This can be seen for bosons and fermions at all effective tenfl€r support the fundamental role of ETH in thermal behavior
peratures and in all system sizes. For all observables and €9t quantum many-body systems.

fective temperatures that we have studied, we have found tha MR acknowledges support from the Office of Naval Re-

Any, decreases with increasing system size. This, togethefearch. MS acknowledges support from NSF Grant PHYO7-
with the understanding of the role of the integrability beea 57035. We thank M. Kastner for an interesting discussion on
ing terms in the initial Hamiltonian, supports our expeictat QET and Ref. [13].
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grable Hamiltonian) will lead to thermalization in integta

systems, despite the fact that the latter do not satisfy ETH.
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