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Atom-dimer scattering below the three-body break-up threshold is studied for a system of three
identical bosons. The atom-dimer scattering length and the energy of the most weakly-bound three-
body state are shown to be strongly correlated. An appropriate rescaling of the observables reveals
the subtlety of the correlation, and serves to identify universal trends in the unitary limit of divergent
two-body scattering length. The correlation provides a new quantitative measure of the degree of
universality in three-body systems with short-ranged interactions, as well as a consistency check of
effective field theories and other theoretical models. PACS numbers: 03.65.Nk, 03.65.Ge, 34.50.Cx,
36.40.-c

Among the most striking results of recent experimen-
tation with supercooled atomic gases is the demonstra-
tion that trap loss rates are extraordinarily sensitive to
few-body interactions within a trapped many-body sys-
tem. The experiments of many groups [1] show signa-
tures of few-body correlations within a trapped ensem-
ble of Bose alkali vapors at nano-Kelvin temperatures.
This discovery has stimulated a large number of theoret-
ical and experimental investigations, particularly in the
unitarity limit of a divergent two-body scattering length,
where the system has no natural length scale beyond that
of the trapping potential.
It is widely anticipated that in the vicinity of unitar-

ity, supercooled Bose gases display universal collective
properties. However, criteria for the onset of universal-
ity and measures of the degree of universality have not
yet emerged. The primary purpose of this Letter is to
provide such a measure through a thorough investiga-
tion of atom-dimer scattering for a wide variety of two-
body short-ranged potentials and the zero-range interac-
tion model [2].
Weakly-bound few-body systems with relatively large

two-body scattering lengths have long been studied in
nuclear physics. A salient example is a result published
by Phillips in 1968 [3] which puzzled nuclear theorists for
more than a decade. Phillips compared results of calcu-
lations of the neutron-deuteron scattering length and the
energy of the triton bound state made with different two-
body potentials. He found that, unlike two-body scat-
tering in which the energy of the last bound state scales
as the inverse squared scattering length (E ∼ −1/a2),
the bound state energy of the triton (n-n-p) appears
approximately proportional to the scattering length of
the neutron-deuteron collision. The data illustrating this
correlation is shown in Figure 1.
Many subsequent works [4] confirmed that a strong

linear correlation between these two observables exists.
Two decades later a simple and elegant explanation of
the Phillips line was given by Efimov and Tkachenko
[5], who simply noted that the apparent linearity derives
from the fact that the two-body potentials used sample
only a small portion of the space of scattering parameters;
that is, they yield similar values for the neutron-deuteron
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FIG. 1. The Phillips line, showing the unexpected linear
correlation between the triton bound state energy and the
neutron-deuteron scattering length (data from ref. [5]).

scattering lengths.

While the origin of Phillips’ observation is now well un-
derstood, modern experiments with ultracold gases are
able to sample a much wider range of scattering param-
eters by magnetic field tuning through a Fano-Feshbach
resonance. This suggests that the correlation between
two- and three-body parameters can be investigated in
far greater detail than in earlier nuclear physics stud-
ies. Theoretical and experimental works related to uni-
versality in ultracold Bose gases have been concentrated
on three-body recombination in the close vicinity of the
three-body threshold. In this work we discuss the proper-
ties of the three-body system at the two-body threshold
and below.

In this work we introduce a new parametrization of
the relationship between the three-body (atom-dimer)
scattering length and the energy of the last three-body
bound state for the specific case of three identical Bosons.
This relationship is referred to below as the modified
Phillips line. In contrast to the original Phillips line,
this relationship is found to be linear over a large range
of interaction parameters and more directly reflects the
well known threshold law for single-channel scattering,

namely E ≈ h̄
2

ma2 . It also provides a simple test for uni-
versality of three-body systems.

As pointed out by Efimov and Tkachenko [5], for a



2

116 118 120 122a
3
, Å

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

E
3, m

K

1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3
 ω

1.3

1.4

1.5

1.6

 α
LM2M2

TTY

HFDBFCI1

HFD-B(He)

LM2M2
TTY

HFDBFCI1

HFD-B(He)

a)

b)

FIG. 2. a) Phillips line for three 4He atoms: the He3 bind-
ing energy as a function of the He − He2 scattering length
based on four commonly used two-body potentials: TTY [6],
LM2M2 [7], HFD-B [8] and HFDBFCI1 [9]. Note the approx-
imately linear relationship (dashed line). b) Modified Phillips
line for three 4He atoms for the same set of potentials. Note
an improved linearity.

weakly-bound three-body state the approximate correla-
tion E2 − E3 ≈ h̄2/(2m12a

2
3) should hold, where E2 and

E3 are the energies of the dimer and trimer bound states
(relative to the three-body break-up threshold), m12 is
the reduced mass of the particle-dimer system and a3 is
the particle-dimer scattering length. A more transparent
representation of the strength of the correlation is ob-
tained by rewriting this equation in terms of the scaled
dimensionless variables

α ≡ a3
√
−2m12E2/h̄

ω ≡ 1/
√

E3/E2 − 1
(1)

The variable α can be thought of as a dimensionless scat-
tering length, and ω characterizes the three-body binding
energy. If the three-body state nearest to the threshold
is deeply bound, ω is small; large values of ω indicate the
existence of a weakly-bound three-body state.

Using a recently developed three-body code, we have
strenuously tested the well studied case of three bosonic
4He atoms [12], and so we will use the helium trimer
as a first illustration of our improved parameterization.
The traditional Phillips line for helium trimer states cal-
culated with four commonly used two-body potentials
is plotted in Figure 2a. Figure 2b shows the modified
Phillips line obtained using the suggested scaling with
the dimer binding energy. Note that the scaling results
in an improved fit.

Equation E2−E3 ≈ h̄2/(2m12a
2
3) derives from the fact

that atom-dimer scattering is dominated by the pole of
the t-matrix corresponding to the near-threshold state of
the trimer. Generally speaking, we should expect the lin-
ear relation of the rescaled parameters α and ω to hold
provided that no other poles of the t-matrix are relevant
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FIG. 3. (Color online) A modified Phillips line plotted with
rescaled parameters for a wide variety of two-body parameters
and several alternative two-body potentials. Red crosses mark
the results for realistic He-He potentials (see Fig. 2)

in the energy range of interest. We have tested this as-
sertion for systems with three indistinguishable bosons
by studying the correlation for a variety of two-body po-
tentials with widely adjusted two-body scattering lengths
and binding energies.

Figure 3 illustrates the correlation for six different fam-
ilies of two-body potentials. The potentials include the
TTY potential [6] with an artificial coupling constant,
the family of Bargmann potentials [10] with fixed small
effective range and a scattering length varying from 2 to
250 atomic units, the Bargmann potential with an effec-
tive range simulating the He-He interaction, the family
of Bargmann potentials with varying asymptotic normal-
izing constant, and the MTV potential [11] (”symmetric
model” for the triton) with a varying coupling constant.
The near-linearity over a wide range of ω is apparent
in the figure, though deviations can be seen, especially
for small values of the 3−body scattering length, mag-
nified in the inset of Figure 3, where the complexity of
the correlation is revealed. An interesting aspect of the
plot, which we had not anticipated, is the emergence of
a universal behavior as the 3−body scattering length ap-
proaches zero.

To better understand the complex correlation revealed
in Figure 3, we show in Figure 4 the same correlation
plot using a single two-body potential (the Bargmann
potential with the effective range r0 = 1 a.u.), but with
large variations of the two-body scattering length. We
have also shown the three-body data generated by solv-
ing the regularized Skornyakov/Ter-Martirosyan equa-
tions (STM) [2, 13] (which are equivalent to Faddeev
equations for a zero-range interaction model).

We can identify two distinctive regimes: a universal
regime and a strong coupling regime. In the strong cou-
pling regime (characterized by relatively small two-body
scattering length) the shape of the modified Phillips line
depends on the potential (inset Fig. 3 ) and, typically,
forms an elongated half-loop above the universal curve.
First, as the two-body scattering length increases, the
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points on the Phillips line move right along the correla-
tion plot reaching a local maximum, and then turn left
as they approach the universal regime.
In the universal regime, as the two-body scattering

length increases, the points along the Phillips line move
left along the universal curve. The shape of the univer-
sal correlation plot stems from the interplay of poles of
the three-body t-matrix corresponding to the formation
of near-threshold bound and virtual states.
We can distinguish three characteristic parts of the uni-

versal curve. The linear part at the right end corresponds
to large positive particle-dimer scattering length and a
very shallow three-body bound state. The diverging part
at the left end of the correlation plot corresponds to large
negative particle-dimer scattering length and indicates
the formation of a near-threshold virtual state. With
increasing two-body scattering length this virtual state
turns into a bound state, and the corresponding point
on the modified Phillips line jumps to the far end of the
positive linear part of the universal curve. There is also
a transitional nonlinear regime, when the scaled particle-
dimer scattering length α is small, and both poles con-
tribute to the shape of the universal curve.
In order to understand the shape of the universal curve

better, we use the Faddeev formalism which treats the
interactions within two-body subsystems explicitly [14].
Let us start from a simple analysis of the spectrum of the
Faddeev operator for identical bosons

K̂(E) = Ĝ2(E)V (P̂+ + P̂−) ,

where Ĝ2(E) = (Ĥ0 + V − E)−1 is the Green’s func-
tion for the three-body channel Hamiltonian, Ĥ0 is the
Hamiltonian for three free particles, V is the two-body
pairwise potential and P̂± are Jacobi coordinate trans-
formation operators. The equation for the component of
the scattering wave function 1 then reads

[1 + K̂(E + i0)]Φ = −K(E + i0)χ0 ,

where χ0 stands for the atom-dimer plane wave and Φ
behaves asymptotically as a three-dimensional spherical
wave [15]. The component of the bound state wave func-
tion satisfies the homogeneous equation

[1 + K̂(E)]Φ = 0 .

The Faddeev operator K̂(E) for short-range potentials
has a discrete spectrum with eigenvalues λn(E). For E ≤
E2 the eigenvalues λn(E) are real.
At the two-body threshold E = E2 the Faddeev op-

erator can be approximated by a sum of projectors on

1 The three-body wave function can be recovered from the com-
ponent as Ψ = (1 + P+ + P−)(Φ + χ0).
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FIG. 4. The modified Phillips line for the Bargmann potential
and the zero-range model. For the Bargmann potential the
effective range is held fixed at 1 a.u., while the scattering
length varies from 2 to 460 a.u. . The values of the two-body
scattering length a2 are shown along the curve.

the states corresponding to eigenvalues λ+ and λ− clos-
est to −1. The particle-dimer scattering length can then
be expressed as

a3 =
a+

1 + λ+(E2)
+

a−

1 + λ−(E2)
, (2)

where a+ and a− are some real positive coefficients cor-
responding to the residues of the scattering length at the
poles λ±(E) = −1. These residues depend on the energy
parameter very smoothly and can be approximated by
constants a+ and a−. There are two possible situations:
1) one of the eigenvalues – λ+(E2) or λ−(E2) – is very
close to the critical value λ = −1 and the corresponding
term gives the major contribution to the particle-dimer
scattering length; 2) both of the terms contribute sub-
stantially. The first case is responsible for the “linear”
and “singular” parts of the α(ω) universal correlation
plot. The second case corresponds to the intermediate
regime of small scaled particle-dimer scattering length α.
This interpretation is illustrated in Fig. 5, where we

show the particle-dimer scattering length (top) and the
three-body operator spectrum (bottom) as a function
of the two-body scattering length. The poles in the
three-body scattering length correspond to the eigenvalue
of the three-body operator crossing the critical value
λ(E2) = −1, where a new three-body bound state is
formed.
A close fit to the universal part of the modified Phillips

line is reproduced by the simple empirical formula

α =
α1

1

ω
− 1

ω0

+ ω + α0 (3)

with α1 = 5.5, ω0 = 0.419 and α0 = 4. The first term
here is responsible for the description of the large nega-
tive scattering length regime, the other two terms fit the
large positive scattering length regime. Equation 3 can
be used in practical calculations to estimate the trimer
binding energy from the scattering length. A simpler
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FIG. 5. Atom-dimer scattering length and the spectrum of
the kernel of the Faddeev (a) or STM (b) equation at the
two-body threshold as a function of the two-body scattering
length. a) Bargmann potential with r0 = 1 a.u., b) zero-range
interaction model.

empirical fit α = ω + 3

2
(1− 1/ω2) is suitable for positive

three-body scattering length.

Careful analysis of the modified Phillips line reveals
that in the universal, potential-independent regime the
scattering length for the atom-dimer collision approaches
zero when E3/E2 ≈ 2.54. The other special point on the
plot corresponds to divergent negative scattering length,
which corresponds to the universal ratio E3/E2 ≈ 6.7.

The result demonstrates a novel form of universality
in weakly bound systems. Simple in physical nature, the
modified Phillips line provides an important test for nu-
merical and theoretical analysis of 3-body systems. It
affords the opportunity to check bound-state and scatter-
ing results for consistency and classifies 3-body systems
according to distinct dynamical regimes. It also provides
an opportunity to check estimates of 3-body bound states
and atom-dimer scattering lengths for internal consis-
tency; such as those obtained with regularized zero-range
potential models [16]. Correlation plots similar to the
modified Phillips line for bosons can be constructed for
three-body systems with nontrivial spin-isospin structure
and nonidentical particles. Here we shall only mention
that the data shown in Figure 1 is consistent with the
universal part of the modified Phillips line constructed
on the base of the zero-range interaction model [13].

The calculations presented here have been performed
using an original code for solving Faddeev equations
[17, 18]. The numerically effective computational kernel
quickly solves the system of Faddeev equations for bound
or scattering states (from a few seconds to a few minutes,
depending on the desired numerical accuracy and physi-
cal parameters of the system). The code is available from
the authors by request and will be available online in the
near future.
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