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Spatially discordant alternans is a widely observed pattern of voltage and calcium signals in cardiac tissue
that can precipitate lethal cardiac arrhythmia. Using spatially coupled iterative maps of the beat-to-beat dynam-
ics, we explore this pattern’s dynamics in the regime of a calcium-dominated period-doubling instability at the
single cell level. We find a novel nonlinear bifurcation associated with the formation of a discontinuous jump
in the amplitude of calcium alternans at nodes separating discordant regions. We show that this jump unidi-
rectionally pins nodes by preventing their motion away fromthe pacing site following a pacing rate decrease,
but permitting motion towards this site following a rate increase. This unidirectional pinning leads to strongly
history-dependent node motion that is strongly arrhythmogenic.

PACS numbers: 87.19.Hh, 05.45.-a,89.75.-k

The study of period-two dynamics in cardiac tissue has
become an important topic of research in the physics [1]
and biomedical communities [2]. The term alternans de-
scribes beat-to-beat alternations of both action potential du-
ration (APD) and peak intracellular calcium concentration
(Capeaki ). Heart cells generically exhibit alternans when they
are paced rapidly or in pathological conditions. Interest in
alternans during the last decade has stemmed from the dis-
covery that APD alternations can become “spatially discor-
dant” in tissue [3], meaning that APD alternates with oppo-
site phases in different regions [4, 5]. Spatially discordant al-
ternans (SDA) dynamically creates spatiotemporal dispersion
of the refractory period during which cells are not excitable,
thereby promoting wave blocks and the onset of lethal cardiac
arrhythmias [2].

To date, our theoretical understanding of SDA is well devel-
oped for the case where APD alternans results from an insta-
bility of membrane voltage (Vm) dynamics at the single cell
level, which originates from the restitution relation between
APD and the preceding diastolic interval (DI) between two
action potentials. Numerical simulations [6] have shown that
“nodes”, which are line defects with period-1 dynamics sep-
arating discordant regions of period-2 oscillations of opposite
phases, can form spontaneously in paced homogeneous tissue
due to conduction velocity (CV) restitution, the relationship
between action potential propagation speedcv and DI. In ad-
dition, node formation has been understood theoretically in
an amplitude equation framework [7, 8] to result from a pat-
tern forming linear instability that amplifies spatially periodic
stationary or traveling modulations of alternans amplitude.

Despite this progress, our theoretical understanding of SDA
remains incomplete. Both experiments [9] and ionic model
simulations [10] have shown thatCapeaki can alternate even
whenVm is forced to be periodic with a clamped action po-
tential waveform, demonstrating that alternans can also result
from an instability of intracellular calcium dynamics. Al-
though alternans are presently believed to be predominantly
Cai-driven in many instances, our understanding of nodes in
this important case remains limited. Numerical simulations
have shown a qualitatively similar role of CV-restitution in

SDA formation forVm- andCai-driven alternans [4, 11], but
more complex behaviors for the latter case depending on the
strength ofCai-driven instability [12] and the nature ofCai-
Vm coupling [11, 13]. However, a theoretical framework to in-
terpret both computational and experimental observationshas
remained lacking.

In this Letter, we extend the theoretical framework of [7] to
uncover novel aspects of SDA formation forCai-dominated
instability and validate our theoretical predictions withde-
tailed ionic model simulations. A major finding is that node
motion can be pinned in one direction owing to the formation
of a discontinuous jump in calcium alternans amplitude at a
node where onlyVm exhibits period-1 dynamics. This jump
leads to strongly history-dependent SDA evolution and also
alters fundamentally the spacing between nodes. We summa-
rize here our main results and additional details of both theory
and simulations will be described elsewhere.

We start our analysis from the system of spatially coupled
maps of the general form

Cn+1(x) = fc[Cn(x), Dn(x)], (1)

An+1(x) =

∫ L

0

G(x, x′)fa[Cn+1(x
′), Dn(x

′)]dx′, (2)

whereAn(x), Dn(x), andCn(x) denote the APD, DI, and
Capeaki , respectively, at beatn and positionx, andG(x, x′)
captures the cumulative effect of electrotonic (Vm-diffusive)
coupling during one beat. For a cable of lengthL paced at
x = 0 with no flux boundary conditions onVm at both ends,
G(x, x′) = G(x − x′) + G(x + x′) + G(2L − x − x′),

with G(x) = Hξ(x)
[

1 + wx
ξ2

(

1− x2

ξ2

)]

whereHξ is Gaus-

sian with standard deviationξ (see Appendix B of [7]) and
ξ =

√
2DV APD∗ andw = 2DV /cv

∗ are two intrinsic length-
scales expressed in terms of the APD and CV at the alter-
nans bifurcation (APD∗ and cv∗, respectively), andDV is
the diffusion constant ofVm in the standard cable equation
V̇m = DV ∂

2
xVm − Iion. Furthermore, CV-restitution causes

the activation intervalTn(x) ≡ An(x) +Dn(x) to vary from
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beat to beat along the cable as [7, 14]

Tn(x) = τ +

∫ x

0

dx′

cv(Dn(x′))
−
∫ x

0

dx′

cv(Dn−1(x′))
, (3)

whereτ is the imposed period at the paced end (x = 0).
To complete the model, we need to specify the forms offa
andfc. Since we are interested in understanding the generic
behavior of alternans, we choose simple phenomenological
forms of those maps defined implicitly by

fc/C
∗ = 1− rcn + c3n + αdn, (4)

fa/A
∗ = 1 + βdn + γcn+1, (5)

wherecn ≡ (Cn − C∗)/C∗, dn = (Dn − D∗)/A∗, and we
also definean = (An − A∗)/A∗. With this choiceCn = C∗,
An = A∗, andDn = D∗ are trivial fixed points correspond-
ing to cn = an = dn = 0. Moreover,cn, an, anddn mea-
sure the departure ofCapeaki , APD, and DI from those fixed
point values during alternans. The cubic polynomial incn in
Eq. (4) models a period-doubling bifurcation of the intracellu-
lar calcium dynamics with the amplitude ofCapeaki alternans
increasing with the degree of calcium instabilityr. The term
dn in Eq. (5) incorporates APD-restitution. The other cross
terms in Eqs. (4) and (5) model the bi-directionalVm − Cai
coupling taken to be positive in both directions (α > 0 and
γ > 0), corresponding to the typical case of locally in-phase
APD andCapeaki alternans.

To complete the derivation of maps describing the dynam-
ics of an, dn, andcn, we linearize Eq. (3) about the fixed
point, which yields

an + dn = −
∫ x

0

dx′

Λ
(dn − dn−1)/2 (6)

whereΛ ≡ cv∗2/(2cv′∗). This linearization is formally valid
as long as the amplitude of DI alternans induced byCai alter-
nans is small enough that we can locally neglect the curvature
of the CV-restitution curve, or|(r−1)1/2γA∗cv′′∗/cv′∗| ≪ 1.
Furthermore, we assume that the evolution of alternans ampli-
tude is sufficiently slow that we can make the approximation
dn−1 ≈ −dn. This assumption is valid close to the alternans
bifurcation. Substitutingdn−1 = −dn in Eq. (6) and differen-
tiating both sides, we obtain a differential equation fordn(x)
that can be solved exactly. Because the pacing rate is fixed at
x = 0, givingan(0) + dn(0) = 0, this yields

dn(x) = −an(x) + e−x/Λ

∫ x

0

dx′

Λ
ex

′/Λan(x
′). (7)

The dynamics is completely specified by Eq. (7) together with
the maps obtained by inserting Eqs. (4)-(5) into Eqs. (1)-(2):

cn+1(x) = −rcn(x) + c3n(x) + αdn(x), (8)

an+1(x) =

∫ L

0

G(x, x′) [βdn(x
′) + γcn+1(x

′)] dx′. (9)
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FIG. 1: (Color online) (a) Nature of steady-state solutionsin ther-Λ
plane. From left to right, no alternans (c = 0), smooth calcium pro-
files (c > 0, smooth), and discontinuous calcium profiles (c > 0, dis-
continuous). (b) Smooth traveling and (c) discontinuous stationary
c(x) (blue) anda(x) (dashed red) profiles from simulating Eqs. (7)-
(9), using(r,Λ) = (0.9, 10) and(1.2, 15), respectively. Alternans
profiles obtained from a detailed ionic model [15] analogously show-
ing (d) smooth traveling and (e) discontinuous stationary solutions.

Note that the pacing rateτ no longer appears in the final equa-
tions but is still contained implicitly in the fact thatD∗, and
hence the CV-restitution slope andΛ, can depend onτ . Also,
sincedn−1 = −dn in steady-state, Eqs. (7)-(9) remain valid
in steady-state even further from the bifurcation.

In Fig. 1, we present the results of different alternans behav-
ior obtained from a numerical survey of Eqs. (7)-(9) where we
vary systematically CV-restitution, which becomes shallower
with increasingΛ, and the strength ofCai-driven instability
that increases withr. In Fig. 1(a) we summarize the nature
of steady-state solutions in this parameter space. Smallr val-
ues yield no alternans solutions (c = 0) where both steady-
statec(x) anda(x) are identically zero. Whenr is increased
we find a first bifurcation at a valuer1(Λ) where steady-state
solutions for bothc(x) anda(x) become non-zero and form
smooth waves (c > 0, smooth). If the asymmetry ofG, given
by w, is not too small these waves are stationary, otherwise
they move towards the pacing site with a constant velocity,
as in the voltage dominated case [7]. For all work presented
herew = 0 was used, yielding traveling waves in the smooth
regime. We found qualitatively similar results for positivew.

Whenr is increased further we find a second bifurcation at
a valuer2(Λ) where calcium alternans profiles become sta-
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tionary and discontinuous at the nodes separating out of phase
regions (c > 0, discontinuous) whilea(x) remains smooth
due to the smoothing effect of voltage diffusion. Example
profiles of steady-statec(x) (blue dots) anda(x) (dashed red)
are shown in Figs. 1(b) and (c) from the smooth and discon-
tinuous regions, using(r,Λ) = (0.9, 10) and (1.2, 15), re-
spectively. For all figures presented in this Letter we use pa-
rametersα = γ =

√
0.4, β = 0, ξ = 1, andw = 0. For

comparison, in Figs. 1(d) and (e) we showc(n) anda(n) pro-
files inferred from numerical simulation of the detailed ionic
model in Ref. [15], wheren indexes individual cells, using
parameter values that give smooth traveling profiles and dis-
continuous stationary profiles, respectively. Traveling profiles
have arrows indicating movement.

The onset of alternans atr1(Λ) is mediated by an abso-
lute instability analogous to that studied in Ref. [7] for the
voltage-driven case. Forβ = 0 a linear stability analysis
yields thresholds ofr1(Λ) = 1 − η + 3ηξ2/3/(4Λ2/3) and
1− η + ξ2(wΛ)−1 for the instability of the traveling and sta-
tionary modes, respectively, whereη = αγ. Furthermore, the
wavelength at onset is4πξ2/3Λ1/3/

√
3 and2π(wΛ)1/2 in the

traveling and stationary cases, respectively, which agrees with
the voltage-driven case in Ref. [7]. Similar expressions can be
obtained forβ 6= 0. Numerical simulations (not shown) are in
good agreement with these theoretical results.

We now concentrate on the discontinuous regime that is
the primary focus of this letter. To characterize calcium al-
ternans profiles in this regime [cf. Fig. 1(c)], we examine
first stationary steady-state period-two profiles and substitute
c(x) = cn(x) = −cn+1(x) into Eq. (8). After differentiating
Eq. (8) with respect tox and some manipulations, we obtain

Λc′(x) =
c3(x)− (r − 1)c(x)− αΛa′(x)

(r − 1)− 3c2(x)
. (10)

Thus, when alternans grow fromc ∼ 0 with r > r2(Λ),
if c(x) = c− = ±

√

(r − 1)/3 the derivative diverges and
c(x) becomes discontinuous. Through the discontinuity, the
quantity αd(x) in Eq. (8) remains smooth, so finding the
other root of the cubic(r − 1)c = c3 + αd gives the value
of c(x) at the latter end of the discontinuity. This gives
c(x) = c+ = ∓2

√

(r − 1)/3 and a total jump of amplitude
|c+−c−| =

√

3(r − 1). To measure the asymmetry at a node,
we introduce the quantity∆ ≡ ||c+| − |c−||/

√

(r − 1)/3.
We will refer to a discontinuity wherec(x) jumps fromc− =
±
√

(r − 1)/3 to c+ = ∓2
√

(r − 1)/3 as anormal jump. A
remarkable property of this jump is that the limiting valuesc+
andc− on either side of the node depend only on the strength
r of Cai-driven instability, and is independent of all the other
parametersΛ, η, β, ξ, andw. Experimentally,r = 1 is the
point in parameter space where an isolated myocyte paced
with a periodic AP-clamp waveform, or a tissue paced at one
point with negligible CV-restitution (Λ = ∞) bifurcates to al-
ternans. Hence, the ratioc+/c− can be used to deducer in
tissue experiments or simulations under a finite effect of CV-
restitution, and hence to relate single-cell and tissue behavior.
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FIG. 2: (Color online) Usingr = 1.2, |c−| (solid blue) and|c+|
(dashed red) versusΛ from an initial profile withΛ = 10. Inset:∆.

When starting from the unstable base solution without al-
ternans (a = c = 0) in the regimer > r2(Λ), SDA forms
dynamically as a periodic pattern of discontinuous nodes with
normal jumps. A unique feature of SDA evolution in this
regime, which is entirely absent forVm-dominated instabil-
ity, is that both the node positions and alternans profiles can
depend strongly on thehistory of how the parametersr and
Λ are varied. IfΛ or r are increased starting from a profile
with normal jumps, the position of the nodes remains con-
stant, but the shape of the profile deforms in such a way that
the jump inCai-alternans profile becomes symmetrical about
the node, i.e. both|c−| and|c+| approach the same limiting
value |c±| =

√
r − 1 where∆ vanishes. This shows that,

if initial conditions contain discontinuous nodes, jumps need
not be normal in steady-state ifc(x) = c− = ±

√

(r − 1)/3 is
not attained. This is shown in Fig. 2 where we plot|c−| (solid
blue) and|c+| (dashed red) usingr = 1.2 as we increaseΛ
from 10. AsΛ is increased,|c−| and|c+| tend toward one an-
other. We superimpose theoretical values of|c±| for the nor-
mal jump andΛ−1 = 0 cases in dot-dashed black for compari-
son, noting that|c−|, |c+| vary smoothly between these values
for intermediate values ofΛ. In the inset we plot∆ versusΛ,
noting that∆ → 0 asΛ → ∞. If Λ is then decreased back un-
til it reaches its original value (not shown), the profile recovers
its original shape. However, ifΛ or r are decreased starting
at a point where the jumps are normal, the pattern close to
the node preserves its shape, but the node moves towards the
pacing site. Importantly, ifΛ or r are increased back after the
node has moved, the node does not return to its original posi-
tion, but rather its shape will deform to become symmetrical
as described above. Since no parameter change can induce
the node to move away from the pacing site, node motion is
unidirectionally pinned. We note that we have also observed
unidirectional pinning in our ionic model simulations [15].

When the node is unpinned, we find that the location of
the first node, denotedx1, scales linearly withΛ, suggesting
that the node spacing is independent of electrotonic coupling.
This linear scaling withΛ in the discontinuous regime is to
be contrasted with the scaling of the node spacing for smooth
alternans profiles (e.g.ξ2/3Λ1/3 for w = 0), which depends
strongly on electrotonic coupling. Physically, this linear scal-
ing reflects the fact that electrotonic coupling has a negligi-
ble effect on the outer scale where the alternans profile varies
slowly on a scale∼ Λ, and only becomes relevant on a scale
∼ ξ near the nodes. This only adds a subdominant correction
of orderξ to thex1 ∼ Λ scaling. Mathematically, it can be
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FIG. 3: (Color online) (a) Paths (i) and (ii) (solid and dashed) in
(r,Λ). (b) Initial profile (solid black) and final profiles (solid and
dashed blue) after moving along path (i) and (ii). (c), (d) Asymmetry
∆ (circles) andx1 (crosses) along paths (i) and (ii), respectively.

related to the fact thatΛ scales out of Eq. (10) in the limit
Λ ≫ ξ if one uses the scaled variablex̃ = x/Λ instead ofx.

To investigate the consequences of unidirectional pinning,
we investigated the pattern evolution in response to multi-
ple parameter changes. Namely, we changedr andΛ fol-
lowing two different paths that connect the same points in
(r,Λ). Starting with a pattern with normal jumps at(r,Λ) =
(1.16, 30), we move to(1.26, 14) first by increasingr and
then decreasingΛ [path (i)] and vice versa [path (ii)]. De-
spite the same start and end parameters, the resulting profile
characteristics vary significantly depending on the path fol-
lowed, as shown in Fig. 3. In Fig. 3(a) paths (i) and (ii) are
denoted by solid and dashed blue arrows, respectively, with
the start and endpoints denoted as a black circle and square.
In Fig. 3(b) we zoom in on the first node of the initial pro-
file (solid black curve) and final profiles after moving along
path (i) (solid blue) and (ii) (dashed blue). Consistent with
our summary above,x1 remains constant along path (i) while
∆ decreases asr is increased, after which∆ increases asΛ is
decreased. Along path (ii)x1 decreases withΛ, then remains
constant while∆ decreases asr is increased. This is shown in
Fig. 3 (c) and (d), which show∆ (black circles) andx1 (red
crosses) measured along paths (i) and (ii), respectively.

In conclusion, we have extended our basic theoretical
understanding of SDA dynamics to the important case of
calcium-driven instability. Furthermore we have made a num-
ber of new experimentally testable predictions, which we have
validated by detailed ionic model simulations. The main pre-
diction is that node motion becomes unidirectionally pinned
when theCai alternans profile becomes spatially discontinu-
ous above a threshold ofCai-driven instability. This predic-
tion could be tested by first increasing progressively the pac-
ing rate (decreasing the inverse restitution slopeΛ), thereby
causing the node to move towards the pacing site, as has al-
ready been observed in some experiments on APD SDA [4, 5],
and then decreasing the pacing rate to its original value. If

the Cai-alternans profile exhibits a jump at the node, the
node should remain stationary. Increasing pacing rate can
also cause several parameters to change, including the de-
gree ofCai-driven instability. However, we have shown that
history-dependent SDA evolution is robust to multiple param-
eter changes (Fig. 3), and hence should be observable in more
complex situations. We emphasize that unidirectional pin-
ning is a purely dynamical phenomenon independent of in-
trinsic tissue heterogeneities, which can also potentially pin
node motion. However, we expect pinning due to tissue het-
erogeneities to be generally bi-directional, and hence distin-
guishable from unidirectional dynamically-induced pining. A
second prediction is that the spatial jump inCai-alternans am-
plitude displays remarkably universal features. The magni-
tude and asymmetry of this jump are insensitive to most pa-
rameters except the degree ofCai-driven instability, and both
quantities are generally history-dependent.

Unidirectional pinning generally makes it harder to elimi-
nate SDA by node motion once they are formed. We there-
fore expect SDA to be more arrhythmogenic forCai- than
Vm-dominated instability. Given that alternans are believed
to be predominantlyCai-driven in common pathologies such
as heart failure, SDA may play an even more important role
than previously thought in such pathologies.
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