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A method of window exchange umbrella sampling molecular dynamics simulation is employed
for transmembrane helix assembly. An analytical expression for the average acceptance probability
between neighboring windows is derived and combined with the first passage time optimization
method to predetermine a parameter set in an optimal range. With the parameter set, the method
provides a substantially more efficient sampling of helix-helix interfaces together with the potential
of mean force along the helix-helix distance of a transmembrane helix dimer model, compared to
the umbrella sampling method.

PACS numbers: 87.10.-E

Membrane proteins are involved in many vital cellular
processes [1]. Unlike globular proteins, the orientation of
each helix in membrane proteins with respect to mem-
brane bilayers defines their structures, which is closely
related to their functions. Structures of various polytopic
membrane proteins in detergents and micelles have been
determined by crystallography and spectroscopy. How-
ever, it remains challenging to obtain structural informa-
tion of membrane proteins with small numbers of trans-
membrane (TM) helices and their oligomers in bilayer
environments [2]. Membrane proteins with a single-pass
TM helix are abundant and receptors with a single-pass
TM helix make up about 30% of human TM receptors [1].
In this context, it is critical to have a reliable compu-
tational approach to provide structural models of these
membrane proteins and the helix association energetics.
In the computational TM-assembly modeling, multiple

degrees of freedom for helix motion, such as helix-helix
distance, crossing angle, and rotation angle along each
TM helical axis need to be considered. Therefore the
modeling itself is computationally intensive even in find-
ing the interfacial (contact) residues of a simple bitopic
TM helix dimer [3]. Furthermore, in most molecular dy-
namics (MD) simulations, it usually has been assumed
that the interface between mutated TM helices resembles
that of the wild type, e.g., the right-handed interface of
point mutated glycophorin A [4]. Without a prior knowl-
edge of the mutant structure, such an assumption may be
problematic because the configurational space sampling
(e.g., crossing and rotation angles) at short or interme-
diate TM helix separations would be incomplete due to
the strong interactions between the interfacial residues.
Replica exchange (REX) methods [5–8] may overcome
such difficulties by facilitating the sampling with the aid
of regular exchange attempts between replicas at differ-
ent temperatures. But, these methods generally do not
provide the potential ofm ean force (PMF) along the re-
action coordinate(s), and their applicability to all-atom
explicit lipid bilayers is limited, in which one can capture
realistic helix-helix interactions. Recently, there has been
remarkable progresses in advanced sampling methods [9].

Among them, the Wang-Landau scheme [10] and the or-
thogonal space random walk (OSRW) strategy [11] are
of particular interest. These methods, in principle, are
quite general and can address all the aforementioned is-
sues. Yet, these methods require sophisticated recursion
procedures, and are therefore challenging to implement.
These issues for TM helix assembly can be ad-

dressed by window exchange umbrella sampling MD
(WEUSMD), a variant of Hamiltonian REXMD [12], in
which replicas (i.e., windows) along a certain helix mo-
tion (i.e., reaction coordinate) are exchanged. In partic-
ular, we developed an analytical expression to predeter-
mine the parameter set in an optimal range, based on the
first passage time optimization for REXMD [13], to make
WEUSMD efficient. Thus, its application is straightfor-
ward compared to the Wang-Landau and OSRW meth-
ods. In the following, we first describe the analytic
expression of the average acceptance probability be-
tween neighboring windows to determine a parameter
set. Then, a practical application of WEUSMD with an
optimized parameter set to a TM helix dimer model is
presented and discussed.
Let us consider a system consisting ofN windows along

a reaction coordinate ξ. The potential energy of the ith
window with a coordinate set Ri under the window po-
tential wm(ξi) is given by Ui(Ri) = U0(Ri) + wm(ξi),
where U0 is the unbiased potential energy, wm(ξi) =
km(ξi − ξm)2/2, ξi ≡ ξ(Ri), km is the window force con-
stant, and ξm is the target value of the reaction coordi-
nate. Assuming that the temperature (T ) is constant for
all the windows, the canonical distribution of ξi becomes

pm(ξi) =
exp (−β[W(ξi) + wm(ξi)])

∫

dξi exp (−β[W(ξi) + wm(ξi)])
, (1)

where β ≡ 1/(kBT ) is the inverse temperature, kB is
the Boltzmann constant, and W(ξ) is the PMF along ξ
defined by exp[−βW(ξ)] ≡ 〈δ(ξ(R) − ξ)〉.
During a WEUSMD simulation, an exchange between

(neighboring) replicas is regularly attempted. The ex-
change between windows i and j under window potentials
wm and wn is accepted or rejected by the Metropolis cri-
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terion Pij = min[1, exp(−∆)], where ∆ = β{[wm(ξj) +
wn(ξi)] − [wm(ξi) + wn(ξj)]}. The average acceptance
probability (Pa) of the exchange can be written as Pa ≡
∫∫

dξidξj pm(ξi)pn(ξj)Pij . One can easily find that the
contributions to Pa from the guaranteed (∆ ≤ 0) and
the conditional (∆ > 0) exchanges are formally identical.
Thus, in terms of Eq. (1), Pa can be written as

Pa = 2

∫∫

∆≤0

dξidξj pm(ξi)pn(ξj) (2)

= 2

∫∫

∆≤0
dξidξje

−β[W(ξi)+W(ξj)+wm+wn]

∫∫

dξidξje−β[W(ξi)+W(ξj)+wm+wn]
.

Here, we omitted ξi in wm(ξi) [ξj in wn(ξj)] for simplicity.
Assuming that [W(ξi)+W(ξj)] is a slowly varying func-

tion compared to the window potentials in the region
where the majority of ξi and ξj are populated, the PMF
terms in the numerator and the denominator of Eq. (2)
can be factored out. Since w is a harmonic function,
the resulting equation becomes an integral of Gaussian
functions

Pa =

√
kmkn
πkBT

∫∫

∆≤0

dξidξje
−β[wm(ξi)+wn(ξj)]. (3)

The above approximation is reasonable because we con-
sider the exchange between neighboring windows and the
contribution of integrands in Eq. (2) becomes negligible
in the region where the window potential is sufficiently
high. When km = kn = k, which is the usual case for the
umbrella sampling simulations, an analytic expression for
Eq. (3) can be obtained as

Pa(z) = erfc(z)

+ e−z2

∞
∑

j=0

2F1(1, 1/2, j + 2,−1)√
2π(j + 1)!2j

z2j+1, (4)

z = d

√

k

2kBT
, (5)

where d = |ξn − ξm|, erfc(z) ≡ 1− erf(z) the complemen-
tary error function, and

2F1(a, b, c, d) =

∞
∑

l=0

(a)l(b)l
(c)l

dl

l!
(6)

with (a)l = a(a + 1) · · · (a + l − 1). As shown in Fig. 1,
Pa(z) obtained using Eq. (4) agrees well with the Pa cal-
culated from WEUSMD simulations of a TM helix dimer
model (see below). Indeed, Eq. (4) works well for var-
ious systems with different k and d (data not shown),
indicating its general applicability.
To estimate the parameter set in an optimal range for

WEUSMD, we adopt the first passage time optimiza-
tion method [13], in which the optimized parameter set
is determined by minimizing the mean round trip time
(τR) of a replica across temperature space [14, 15]. Let
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FIG. 1: The average acceptance probability Pa(z) [Eq. (4)]
compared with Pa calculated from the WEUSMD simulation
for a pVNVV TM helix dimer model.

us define the indices of N windows as 0, 1, . . . , N − 1
(d = ξm+1−ξm > 0). Then, one can define the even pairs
as (0, 1), (2, 3), · · · and the odd pairs as (1, 2), (3, 4), · · · .
At each step, the exchange pairs can be chosen either al-
ternatively between the even and odd sequential pairs or
randomly. In this study, only the former exchange-pair
selection scheme is considered because it shows better
performance for temperature REXMD (TREXMD) [14].
The τR of a window along ξ is minimized when

∂τR
∂z

∝ ∂

∂z

(

1

z2

[

1

Pa(z)
− 1

])

= 0. (7)

The solution of Eq. (7) is zopt = 0.8643 and the cor-
responding Pa is 0.3875. With zopt, the parameter set
for WEUSMD (i.e., the relationship between d and k) is
readily available from Eq. (5).
Using the optimal parameter set, we have applied

WEUSMD to a pVNVV TM helix dimer model [16] un-
der the helix-helix distance restraint potential [17], and
compared various results with those obtained from the
TREXMD and USMD simulations to illustrate the ef-
ficacy and advantage of WEUSMD in TM helix assem-
bly. The sequence of pVNVV is LLLLV LLLLL LNLLL
LLLVL LLLLL VL, which is a membrane-soluble ana-
logue of GCN4 leucine zipper (PDB:2ZTA) [18]. The
helix-dimer interface involves hydrogen bonds (H-bonds)
between Asn residues [19, 20]. The helix-helix distance
(rHH) and crossing angle (Ω) of the pVNVV dimer gen-
erated based on the leucine zipper are 9.23 Å and 29.3◦,
respectively [21]. To get the reference data, a 100-ns
TREXMD simulation was performed with 16 replicas in
a temperature range of 300-550 K starting from the con-
figuration whose rHH = 20 Å and Ω = 29.3◦ (left-handed
dimer). The initial configurations for WEUSMD and
USMD were generated by translating each helix along
rHH and then rotating one helix randomly along its he-
lical axis in order to randomize the TM helix contact
interface. A total of 72 windows whose Ω = −29.3◦

(right-handed dimer) were generated in a rHH range of
6.8-21 Å with 0.2 Å interval. With d = 0.2 Å and zopt =

0.8643, an optimal force constant of k = 22 kcal/(mol·Å2
)

was determined from Eq. (5) for the helix-helix distance
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(C) WEUSMD

FIG. 2: (A) The population of rHH and Ω, P (rHH,Ω), sampled in TREXMD (density map) and the PMF as a function of
rHH for WEUSMD and USMD (solid lines). P (rHH,Ω) was calculated using the ensemble structures at 300 K with the bin
widths ∆rHH = 0.1 Å and ∆Ω = 2◦, which are normalized by the highest population. The error bars for the PMFs are the
standard deviations, which were calculated from the block averages of seven 10-ns trajectories. The population P (rHH,Ω) from
(B) USMD and (C) WEUSMD were calculated over all the windows with the same bin widths as those for TREXMD.

restraint potential to restrain rHH around each target
value [17]. In this study, for computational efficiency,
the EEF1/IMM1 implicit membrane model with a hy-
drophobic thickness of 23 Å was used to mimic a DMPC
membrane bilayer [22]. For each system, 100-ns Langevin
dynamics simulations were performed. All simulations
were performed using CHARMM [23] with the default
IMM1 option, and window exchanges were controlled by
the MMTSB toolset [24]. A timestep of 2 fs was used
for all the simulations with the SHAKE algorithm. The
analysis of TREXMD was done for the last 90-ns trajec-
tory, and those of WEUSMD and USMD were performed
for the last 70-ns trajectory.
The population of the configuration space sampled at

300 K from TREXMD is shown as a function of rHH

and Ω, i.e., P (rHH,Ω), in Fig. 2A and is bounded by
[9 Å, 11 Å] × [0◦, 40◦] with a peak around rHH = 10.1 Å
and Ω = 16.4◦. In the same panel, the PMFs as a func-
tion of rHH fromWEUSMD and USMD are shown, which
were calculated by the integration of the mean force act-
ing along rHH [16]. Each PMF minimum agrees well with
the peak of P (rHH,Ω), and the association free energy
∆G is −5.83 kcal/mol (WEUSMD) and −5.89 kcal/mol
(USMD) in the IMM1 model. The thermally accessible
range of rHH, [9 Å, 11 Å], sampled in TREXMD, corre-
sponds to the range where |W(rHH) − ∆G| ≤ 2kBT for
WEUSMD and USMD. While both PMFs appear to be
similar, the error bars up to rHH = 14 Å are signifi-
cantly larger in the USMD PMF than the WEUSMD
PMF, indicating that the conformational/configurational
sampling at short or intermediate rHH is more efficient in
WEUSMD and thus the PMF converges faster. Indeed,
the 10-ns block average WEUSMD PMFs converged to
the average PMF within 0.48 kcal/mol after the first
10-ns simulation, while the block average USMD PMFs
showed a deviation up to 1.41 kcal/mol even after 100-ns
simulations. In addition, a small deviation between the
WEUSMD and USMD PMFs around rHH = 14 Å arises
from the incomplete sampling of USMD (see below).

The sampling efficiency in WEUSMD is illustrated in
Figs. 2B and 2C. In Fig. 2B, USMD samples wide helix-

helix configurations at rHH > 14 Å where two TM he-
lices do not strongly interact. But, the configurational
sampling in USMD is very restricted and strongly de-
pendent on the initial configurations at rHH < 14 Å (no-
tably in the thermally accessible rHH) due to the strong
interactions between interfacial residues. As shown in
Fig. 2C, however, the configurations in the thermally ac-
cessible rHH from WEUSMD agree well with those from
TREXMD.
The enhanced sampling efficiency in WEUSMD arises

from the fact that the configurations at different rHH can
be exchanged, which helps the system at each window
overcome certain hidden (artificial) barriers introduced
by the restraint potential and sample energetically favor-
able configurations. Therefore, other degrees of freedom
for helix motion (Ω, helix rotation angles, etc) can be
sampled more efficiently by regular exchanges between
windows along ξ (rHH in this study). This feature is
particularly important in TM helix assembly study for
finding both critical TM-TM interfacial residues and the
association energetics. In the case of the pVNVV dimer,
since the Asn residues at the bilayer center can form H-
bonds, it is critical to examine how different sampling
approaches describe such important interactions. Since
the Asn residues show the closest contact in the thermally
accessible rHH, we simply consider the Asn sidechain ro-
tation angles θ1 and θ2 (see Fig. 3A for definition). The
population of θ1 and θ2, P (θ1, θ2), from TERXMD in
Fig. 3B shows three distinct peaks around (θ1, θ2) =
(−30◦, 30◦), (−30◦,−30◦), and (30◦,−30◦) with a minor
peak around (30◦, 30◦). As shown in Fig. 3C, P (θ1, θ2)
sampled in WEUSMD agrees well with the TREXMD
result. However, P (θ1, θ2) sampled in USMD is signifi-
cantly different (Fig. 3D). These results clearly demon-
strate that WEUSMD can be an efficient method in find-
ing optimal interfaces for TM helix assembly (in a given
potential energy function) due to the facilitated sampling
of unrestrained degrees of freedom for helix motion.
In summary, the application of WEUSMD to a

pVNVV TM dimer model demonstrates its efficacy and
advantage in searching critical interfaces for TM helix
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FIG. 3: (A) Asn sidechain rotational angles θ1 and θ2. For two helices i and j, θ1 is defined by the angle between q(j)
− q(i)

and r
(i)
β − q(i), where q(i) and q(j) are the projections of r

(i)
β , the Asn Cβ position in helix i, and r

(j)
β onto their helix axes,

respectively. θ2 is defined similarly. The population of θ1 and θ2, P (θ1, θ2), sampled from (B) TREXMD, (C) WEUSMD,
and (D) USMD. In the calculation of P (θ1, θ2) for WEUSMD and USMD, only the configurations with rHH in the thermally
accessible range, [9 Å, 11 Å], were considered.

assembly (in a given potential energy function) without
sacrificing the availability of the PMF along the reaction
coordinate for helix motion. Starting from an initially
randomized TM-TM orientation, WEUSMD was able to
sample very similar H-bonding patterns as in TREXMD,
in addition to the PMF along the helix-helix distance. Al-
though the PMF calculated from USMD is comparable
to that from WEUSMD, USMD was not able to explore
the configuration space for optimal interfaces of helix as-
sembly due to the strong interactions between residues
at short and intermediate separations. As the termi-
nology implies, WEUSMD combines the advantages of
REXMD and USMD. A notable advantage of WEUSMD
is that it does not require extra simulations, which is
typical in TREXMD (replicas at different T than that of
interest). In addition, with a predetermined parameter
set in an optimal range by Eqs. (5) and (7), the iter-
ative determination of an optimal parameter set can be
avoided, which makes its application simple and straight-
forward. We have developed various helix restraint po-
tentials [25, 26], therefore, it is possible to use any of
these restraints or their combinations in WEUSMD for
efficient and important sampling, especially in all-atom
explicit membranes, to dissect the helix-helix and helix-
lipid contributions along various helix motions in lipid
membranes.
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H. B. Schiöth, BMC Biol. 7 (2009).
[2] R. M. Bill, P. J. F. Henderson, S. Iwata, E. R. S. Kunji,

H. Michel, R. Neutze, S. Newstead, B. Poolman, C. G.

Tate, and H. Vogel, Nat. Biotechnol. 29, 335 (2011).

[3] D. Dell’Orco, P. G. De Benedetti, and F. Fanelli, J. Phys.
Chem. B 111, 9114 (2007).
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