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The recently discovered superconductor CuxBi2Se3 is a candidate for three-dimensional time-
reversal-invariant topological superconductors, which are predicted to have robust surface Andreev
bound states hosting massless Majorana fermions. In this work, we analytically and numerically
find the linearly dispersing Majorana fermions at k = 0, which smoothly evolve into a new branch
of gapless surface Andreev bound states near the Fermi momentum. The latter is a new type
of Andreev bound states resulting from both the nontrivial band structure and the odd-parity
pairing symmetry. The tunneling spectra of these surface Andreev bound states agree well with a
recent point-contact spectroscopy experiment[1] and yield additional predictions for low temperature
tunneling and photoemission experiments.

PACS numbers: 74.20.Rp, 73.43.-f, 74.20.Mn, 74.45.+c

The discovery of topological insulators has gener-
ated much interest in not only understanding their
properties and potential applications to spintronics and
thermoelectrics but also searching for new topological
phases. A particularly exciting avenue is topological
superconductors[2–10], in which unconventional pairing
symmetries lead to topologically ordered superconduct-
ing ground states[11–13]. The hallmark of a topolog-
ical superconductor is the existence of gapless surface
Andreev bound states which host itinerant Bogoliubov
quasiparticles. These quasiparticles are solid-state real-
izations of massless Majorana fermions.

There is currently an intensive search for topologi-
cal superconductors. In particular, a recently discov-
ered superconductor CuxBi2Se3 with Tc ∼ 3K[14] has
attracted much attention[15]. A theoretical study[11]
proposed that the strong spin-orbit coupled band struc-
ture of CuxBi2Se3 favors an odd-parity pairing symme-
try, which leads to a time-reversal-invariant topologi-
cal superconductor in three dimensions. Subsequently,
many experimental and theoretical efforts[16–20] have
been made towards understanding superconductivity in
CuxBi2Se3. In a very recent point-contact spectroscopy
experiment, Sasaki et al.[1] have observed a zero-bias con-
ductance peak which strongly indicates unconventional
pairing[21].

In this Letter, we find a new branch of gapless surface
Andreev bound states (SABS), in addition to linearly
dispersing Majorana fermions at k = 0, in the topo-
logical superconducting phase of CuxBi2Se3 and related
doped semiconductors. This new branch of SABS is lo-
cated near the Fermi momentum and is protected by a
new bulk topological invariant. Moreover, they result
in unique features in the tunneling spectra which are in
good agreement with the point-contact spectroscopy ex-
periment on CuxBi2Se3[1]. We conclude by predicting
clear signatures of these SABS, which can be tested in
future tunneling and photoemission experiments at low

FIG. 1: a) Side view of a semi-infinite crystal of Bi2Se3. The
two relevant pz orbitals are shown in the zoom-in view of the
QL unit cell. b) Bulk and surface bands of the tight-binding
model for Bi2Se3. µ1 and µ2 denote two chemical potentials
where the surface states have, respectively, not merged and
merged into the bulk bands.

temperatures.
We start from the k ·p Hamiltonian for the band struc-

ture of CuxBi2Se3 near Γ[11]

H(k) = mσx + vzkzσy + vσz(kxsy − kysx). (1)

Here σz = ±1 labels the two Wannier functions which
are primarily pz orbitals (from Se and Bi atoms) on the
upper and lower part of the quintuple layer (QL) unit
cell respectively (see Fig.1). Each orbital has a two-fold
spin degeneracy labeled by sz = ±1. We note that an
earlier k ·p Hamiltonian[22] violates the mirror symmetry
of the lattice, and a corrected version[23] is consistent
with (1). Detailed discussion of the discrepancy is left to
Supplementary Material[24]. The sign of mvz is a crucial
quantity which will now be inferred from the existence of
surface states near kx = ky = 0 in the surface Brillouin
zone.

Consider a semi-infinite CuxBi2Se3 crystal occupying
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z < 0, which is naturally cleaved between QLs (see
Fig.1). The realistic boundary condition corresponding
to such a termination in the continuum k ·p theory is[11]

σzψ(z = 0) = ψ(z = 0). (2)

This boundary condition reflects the vanishing of the
electron wavefunction on the bottom layer (σz = −1)
at z = 0. Solving the differential equation

Eψ = H(kx, ky,−i∂z)ψ (3)

subject to (2), we find two branches of mid-gap states

ψ±(kx, ky, z) = ez/l(1, 0)σ ⊗ (1,±ieiφ)s, (4)

where l = −vz/m is the decay length, φ is the azimuthal
angle of (kx, ky), and the subscripts σ and s denote the
orbital σz and spin sz basis. For vzm > 0, there are
no decaying solutions; only when vzm < 0 in (4) do
we obtain surface states decaying in the −z direction.
The dispersion of these surface states is E±(kx, ky) =

±v
√
k2
x + k2

y ≡ ±vk, which agree well with the photoe-

mission data from CuxBi2Se3[16]. Thus, the existence of
surface states on surfaces terminated between QLs estab-
lishes vzm < 0 in H(k) for CuxBi2Se3[24].

Having established that vzm < 0 and v parameterizes
the linear dispersion of the surface states, we now turn
to the superconducting state of CuxBi2Se3. Ref.[11] clas-
sified four different pairing symmetries compatible with
short-range pairing interactions, and found that a spin-
triplet, orbital-singlet, odd-parity pairing symmetry is fa-
vored when the inter-orbital attraction exceeds the intra-
orbital one. The mean-field Hamiltonian of this super-
conducting state is

HMF =

∫
dk[c†k, c̄−k]H(k)

[
ck
c̄†−k

]
,

H(k) = (H(k)− µ)τz + ∆σyszτx. (5)

Here c†k = (c†k,1↑, c
†
k,1↓, c

†
k,2↑, c

†
k,2↓) and c̄−k ≡ c−k ·isy are

four-component electron operators, with the subscript
1, 2 labeling the two orbitals (Fig.1a). In the Bogoliubov-
de Gennes Hamiltonian H(k), τx and τz are Pauli ma-
trices in Nambu space, ∆ is the pairing potential, and
µ > |m| is the chemical potential in the conduction band.

The above odd-parity superconducting CuxBi2Se3 is
fully-gapped in the bulk but has topologically protected
surface Andreev bound states. To determine the wave-
function and dispersion of these bound states, we begin
by solving the BdG Hamiltonian H(kx, ky,−i∂z) for the
SABS at kx = ky = 0. We find a Kramers pair of ε = 0
eigenstates[24]:

ψk=0,α(z) = ez·∆/|vz|(sin(kF z − θ), sin(kF z))σ

⊗ [(1,−α)s, isgn(vz)(1, α)s]τ , α = ±1 (6)

Here kF ≡
√
µ2 −m2/vz is Fermi momentum in the z

direction, and θ is defined by eiθ = (m+ i
√
µ2 −m2)/µ.

The subscript τ denotes a Nambu spinor. The Bo-
goliubov quasiparticle at k = 0 is defined by γα =∫
dz ψk=0,α(z)(c†(z), c̄(z))Tk=0. It is straight-forward to

verify that γ†α = γα up to an unimportant overall phase.
This means that such quasiparticles are two-component
massless Majorana fermions in 2 + 1 dimensions.

Having found the SABS wavefunction at ε = 0, k = 0,
we now show that the SABS dispersion crosses ε = 0
again at finite k, which is one of the main results of this
paper. We establish this second crossing in two different
ways: first, by a direct calculation, and second, by a
topological argument. It will become evident that the
two approaches yield complementary information.

In the direct approach, we search for a second crossing
by asking for which k0 > 0 doesH(0, k0,−i∂z)ψ = 0 have
a solution (it suffices to consider kx = 0, ky ≡ k0 > 0
only, due to rotational invariance). We find that k0 is
the nontrivial solution of the algebraic equation[24]

|x|2 + 2sgn(vz)
EF
m

Re(x)− 1 = 0, (7)

where x is defined as

x ≡ vk0 − i(∆ + iEF )√
(vk0)2 + (∆ + iEF )2

, EF ≡
√
µ2 −m2. (8)

For CuxBi2Se3 in the normal state with ∆ = 0 and
vzm < 0, the above equation has a solution k0 = µ/v,
which exactly correspond to the topological insulator sur-
face states at Fermi energy obtained earlier in (4). With
superconductivity, topological surface states in the nor-
mal state turn into SABS, with their location k0 and

wavefunction ψk0,α perturbed by ∆: k0 ' µ
v (1 − ∆2

2m2 )
and ψk0,α acquires particle-hole mixing to first order in
∆. Due to rotational invariance of the k · p Hamilto-
nian, the second crossing, hereafter denoted by k0, exists
along all directions in the xy plane. This leads to a Fermi
surface of SABS.

In the topological approach, we first solve for the SABS
dispersion at small k and use topological arguments to
infer its behavior at large k. Again, we set kx = 0 for
convenience. Treating the ky-dependent term in HBdG

as a perturbation, we find the dispersion is linear near
k = 0: εα(k) = αṽk + o(k3), forming a Majorana cone.
The velocity ṽ is given by:

ṽ = v
∆2 + sgn(vz)∆m

∆2 + sgn(vz)∆m+ µ2
' v · sgn(vz)

m∆

µ2
. (9)

In the second equality, we have used the fact ∆� |m| <
µ for weak-coupling superconductors.

In (9), it is important that the SABS velocity ṽ at
k = 0 has an opposite sign from the band velocity v
in the normal state of the doped topological insulator
CuxBi2Se3 (vzm < 0). As we now show, this fact has
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crucial implications for the SABS dispersion away from
k = 0: the two branches of SABS ψk,± must cross each
other at ε = 0 an odd number of times between Γ̄ and the
surface Brillouin zone edge M̄ . The existence of such ad-
ditional crossings is dictated by a topological invariant we
call “mirror helicity”, which is a generalization of mirror
Chern number[25] in topological insulators to topologi-
cal superconductors. To define this invariant, note that
the crystal structure of CuxBi2Se3 has a mirror reflection
symmetry x → −x. As a result, the band structure (1)
is invariant under mirror. However, the pairing poten-
tial in (5) changes sign under mirror reflection. So the
BdG Hamiltonian is invariant under a mirror reflection
combined with a Z2 gauge transformation ∆→ −∆:

H(kx, ky, kz) = M̃H(−kx, ky, kz)M̃−1, (10)

Here M̃ = Mτz, M = −isx represents mirror reflec-
tion on electron spin. Because of this generalized mirror
symmetry, bulk states are grouped into two classes with
mirror eigenvalues ±i respectively. Each class can have
a nonzero Chern number n±i. Time reversal symme-
try requires n+i = −n−i. The magnitude |n+i| = |n−i|
determines the number of helical Andreev modes with
kx = 0 on the edge of yz plane, while the sign de-
fines a Z2 mirror helicity: η ≡ sgn(n+i) = −sgn(n−i).
The bulk topological invariant η determines the helic-
ity of such Andreev modes. For instance, η < 0 im-
plies that the mode with mirror eigenvalue −i(+i) moves
clockwise(anti-clockwise) with respect to +x axis at the
edge of the yz plane, and its energy-momentum disper-
sion curve must eventually merge into the E > 0 bulk
quasiparticle continuum at a large positive(negative) mo-
mentum. Similar bulk-boundary correspondence applies
to surface states in topological insulators[25, 26].

As we show in Supplementary Material[24], the topo-
logical superconducting phase of CuxBi2Se3 and the un-
doped topological insulator Bi2Se3 have the same mir-
ror helicity η, which is determined by the sign of the
Dirac band velocity v in the bulk. Given the relation
between η and helicity of surface excitations, this implies
that the SABS in CuxBi2Se3 must have the same helic-
ity as surface states in Bi2Se3. On the other hand, the
SABS velocity ṽ at k = 0 has an opposite sign from the
Dirac band v. To reconcile this fact with the helicity re-
quirement, the two SABS branches ψk,α—which are mir-

ror eigenstates with eigenvalues M̃ = iα—must become
twisted and switch places before merging into the bulk.
This necessarily results in an odd number of crossings
between Γ̄ and M̄ .

The above topological argument reveals the robustness
of gapless SABS at the second crossing in the k ·p regime
and beyond. In the k · p regime, the surface states at k
and −k have opposite mirror eigenvalues (or spins) due
to their helical nature, whereas the pairing symmetry
∆ only pairs states with the same mirror eigenvalues.

FIG. 2: SABS dispersion for the tight-binding model in which
a) m = −0.3 < 0, µ1 = 0.6 and b) m = −0.3 < 0, µ2 =
1; The mirror eigenvalues are displayed near each branch of
SABS. The SABS twist with a second crossing near Fermi
momentum, as also observed in Ref.[20]. The arrow denotes
where the dispersion has zero slope, resulting in a Van Hove
singularity in the density of states.

This symmetry incompatibility makes the surface states
remain gapless in the topological superconducting phase
[27]. Moreover, the topological argument demonstrates
that the second crossing is topologically protected by the
mirror helicity invariant in the bulk, as long as ṽ/v < 0 at
k = 0. As a result, the second crossing remains in a much
larger energy range, even when higher order corrections
to the k · p Hamiltonian become important, as shown
below. In particular, we emphasize that the existence
of the second crossing is independent of whether surface
states are separated from the bulk at the Fermi energy.

To gain more insight into these twisted SABS and to
calculate their local density of states, we explicitly obtain
its dispersion in the entire surface Brillouin zone. For this
purpose, we construct a two-orbital tight-binding model
in the rhombohedral lattice shown in Fig.1 and calculate
the SABS dispersion numerically. Details of our tight-
binding model and its distinction from previous models[1,
20] are described in the Supplementary Material[24].

Here we would like to note the following aspects of
our model. The normal state tight-binding model is con-
structed to reproduce both the k · p Hamiltonian (1) of
CuxBi2Se3 in the small k limit and the boundary condi-
tion (2) in the continuum theory. The bulk and surface
bands of the normal state tight-binding model are dis-
played in Figure 1b; at chemical potential µ1, the Fermi
momentum is relatively small and terms higher order
than k are negligible, whereas at µ2, these higher order
terms cause deviation from the k · p Hamiltonian.

Upon adding odd-parity superconductivity pairing to
the model, we obtain the SABS dispersion (Fig. 2). A
branch of linearly dispersing Majorana fermions is found
at k = 0, which signifies a three-dimensional topologi-
cal superconductor. In addition, the bands of Andreev
bound states in the surface Brillouin zone are twisted:
they connect the Majorana fermion at k = 0 with the
second crossing near Fermi momentum. Such behavior
was independently found by Hao and Lee[20, 24], and its
topological origin is revealed by our analytical calcula-
tions and arguments.
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For a given branch (M̃ = ±i) of SABS, its particle-hole
character evolves as a function of momentum from hav-
ing an equal amount of particle and hole (charge neutral)
at k = 0 to being exclusively hole or particle (charged) at
large k. At chemical potential µ1, the SABS near the sec-
ond crossing can be identified with nearly unpaired sur-
face states in the normal state, which show up twice—as
particle and hole—in the BdG spectrum. However, even
when these surface states have merged into the bulk, the
SABS still has the second crossing, as required by the
mirror helicity. This is shown in Fig. 2b, at chemical
potential µ2. The resulting gapless SABS near the sec-
ond crossing has substantially more particle-hole mixing
than the first case and is unrelated to surface states in the
normal state. Such SABS defy a quasi-classical descrip-
tion and represent a new type of Andreev bound states
which arises from the interplay between nontrivial band
structure and unconventional superconductivity.

Finally, we relate our findings of SABS in CuxBi2Se3

to the recent point-contact spectroscopy experiment[1],
in which a zero-bias differential conductance peak along
with a dip near the superconducting gap edge was ob-
served below 1.2K and attributed to SABS. To com-
pare with this experiment, we calculate the local tun-
neling density of states (LDOS) as a function of energy
for m/µ2 = 0.3—roughly the value found in ARPES[16].
The resulting LDOS at zero and finite temperatures are
shown in Fig. 3. The finite temperature LDOS from
T = 0.05∆ to T = 0.2∆ agrees with the experimen-
tally observed differential conductance peaks as well as
the dips with the slight asymmetry between positive and
negative voltages. Both features along with the absence
of coherence peaks contrast sharply with the tunneling
spectrum of an s-wave superconductor.

In addition to comparison with the experiment, we
make the following predictions stemming from the zero
temperature LDOS in Figure 3a. Here the two peaks
arise from Van Hove singularities at the particular en-
ergy near E = 0 where the SABS bands have zero slope,
indicated by the arrow in Fig. 2b. Furthermore, the
significant asymmetry in the height of these two peaks
reflects the fact that the SABS at the turning point is
primarily of hole type, as noted earlier. The energy of
these two peaks and the magnitude of their asymmetry
depends somewhat on details of band structure. How-
ever, the existence of two peaks only depends on there
being a turning point in the SABS dispersion, which is
guaranteed by the existence of a second crossing in a wide
regime of chemical potentials. Hence, we predict that
for relatively clean surfaces the zero-bias conductance
peak in the tunneling spectra will split into two asym-
metric peaks at even lower temperatures. Such peaks
will be an unambiguous signature of Majorana fermions
smoothly turning into normal surface electrons. Further-
more, the SABS dispersion we predict in Fig.2 can be
directly tested in future ARPES experiments.

FIG. 3: Tunneling local density of states (arbitrary units)
at a) T = 0 and b) finite temperature. In both cases, the
chemical potential is µ2 = 1.

While the main focus of this Letter is CuxBi2Se3,
we end by discussing the implications of our findings
for superconducting doped semiconductors with similar
band structures. Candidates include Bi2Te3[31] under
pressure, TlBiTe2[32], PbTe[33], SnTe[34], and GeTe[35].
Provided that the material is inversion symmetric and
its Fermi surface is centered at time-reversal-invariant
momenta, the Dirac-type relativistic k · p Hamiltonian
(1) describes their band structures[28]. Moreover, if the
pairing symmetry is odd under spatial inversion and fully
gapped, the system is (almost) guaranteed to be a topo-
logical superconductor according to our criterion[11, 30].
Our work is also relevant to noncentrosymmetric super-
conductors such as YPtBi[36], if their pairing symmetries
have dominant odd-parity components.

As a final point which captures the essence of this work,
we compare and contrast SABS in doped superconduct-
ing topological insulators with normal insulators, which
differ by a band inversion (vzm < 0 versus vzm > 0).
In both, the Majorana fermion SABS exist at k = 0 as
shown in (6, 9). However, the SABS in doped normal in-
sulators do not necessarily have the second crossing near
Fermi momentum[24]. This can be understood from our
mirror helicity argument, with the difference being that
ṽ/v > 0 for vzm > 0 (see Eq.(9)). In this sense, the
new type of surface Andreev bound state and its phe-
nomenological consequences are the unique offspring of
both nontrivial band structure and odd-parity topologi-
cal superconductivity.

Note: Two recent studies[1, 20] calculated the surface
spectral function numerically in CuxBi2Se3 tight-binding
models. The second crossing of SABS was independently
found in Ref.[20]. We also learned of another point-
contact measurement on CuxBi2Se3[37].
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