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We present a perturbative QCD factorization formalism for the production of heavy quarkonia of
large transverse momentum pT at collider energies, which includes both the leading power (LP) and
next-to-leading power (NLP) contributions to the cross section in the m2

Q/p
2

T expansion for heavy
quark mass mQ. We estimate fragmentation functions in the non-relativistic QCD formalism, and
reproduce the bulk of the large enhancement found in explicit NLO calculations in the color singlet
model. Heavy quarkonia produced from NLP channels prefer longitudinal polarization.
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Introduction—More than thirty-five years after the dis-
covery of the J/ψ [1], the production of heavy quarko-
nia remains a key subject in strong interaction physics
[2]. The inclusive production of pairs of charm or bot-
tom quarks, with masses mQ ≫ ΛQCD, is an essentially
perturbative process, while the subsequent evolution of
the pair into a physical quarkonium is nonperturbative.
Different treatments of the transformation from heavy
quark pair to bound quarkonium are given in various for-
malisms, most notably, the color singlet model (CSM),
the color evaporation model (CEM), and non-relativistic
QCD (NRQCD). The current status of theory and exper-
iment has been summarized very recently in Ref. [2].

For the NRQCD formalism [3, 4], small, color-octet
production matrix elements can provide good fits to high
pT inclusive hadron collider cross sections for J/ψ and Υ,
but a complete description remains elusive. Polarization
in particular remains a challenge, along with the sur-
prisingly high rate of associated production in electron-
positron annihilation [2]. Although plausible arguments
for the use of NRQCD at leading power (p−4

T ) have been
around since the beginning of the formalism [4], issues
of gauge invariance and infrared cancellation are still
not completely settled [5, 6]. Meanwhile, large next-to-
leading order (NLO) and potentially large next-to-next-
to leading order (NNLO) corrections to high-pT cross sec-
tions [7] in the CSM have attracted attention. The size of
these color singlet cross sections seems to upset long-held
expectations for gluon fragmentation/color octet domi-
nance, and indeed, they appear in diagrams that fall off
like p−6

T in dσ/dp2T , compared to the leading, p−4
T behav-

ior associated with gluon fragmentation. These devel-
opments suggest that we must widen the formalism for
quarkonium production beyond leading power.

In this letter, we emphasize the expansion of the pro-
duction rate of the heavy quark pairs first in the large
scale pT and then in the coupling constant αs. We
present a perturbative QCD (pQCD) factorization for-
malism, accurate to the first nonleading power in m2

Q/p
2
T

that incorporates both leading power gluon fragmenta-
tion and direct production of heavy quarks at short dis-
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FIG. 1. J/ψ production through a single parton (a gluon)
fragmentation (left) and fragmentation of a heavy quark pair
(right).

tances with subsequent fragmentation, as illustrated in
Fig. 1 [8]. These figures are shown in cut diagram no-
tation, in which the amplitude and complex conjugate
are combined into a forward scattering diagram in which
the final state is identified by a vertical line. When
pT ≫ mQ, the rate to produce a gluon (or in gen-
eral a single parton) at distance scale 1/pT , which frag-
ments into a heavy quark pair and thence into a physical
quarkonium, is characterized by a p−4

T behavior. We re-
fer to this as the leading power (LP) contribution. The
perturbative production of a collinear heavy quark pair
directly at the short distance scale 1/pT is suppressed by
1/p2T relative to the production rate of a single parton
at the same pT . We therefore refer to it as a next-to-
leading power (NLP) contribution. As we will see below,
however, the probability for a such heavy quark pair to
evolve into a heavy quarkonium is naturally enhanced
compared to that of a single parton. This can promote
the NLP channel to phenomenological interest, despite
its suppression by two powers of pT .

The physical heavy quarkonium is likely formed long
after the heavy quark pair was produced [9]. Both the
LP and NLP production channels in Fig. 1 can therefore
be considered as fragmentation contributions [2]. Similar
to factorization at LP [5], the NLP contribution to the
production rate is factorized into perturbatively calcula-
ble short-distance coefficient functions for producing the
heavy quark pair convoluted with non-perturbative but
universal long-distance fragmentation functions for the
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pair to become a heavy quarkonium [8]. The universality
of the fragmentation functions can in principle be tested
when we compare the data of heavy quarkonium produc-
tion from processes with different short-distance coeffi-
cients. As a consequence of this perturbative factoriza-
tion, the short-distance coefficient functions at both the
LP and NLP capture the dynamics at the distance scale
1/pT , and are insensitive to the details of the produced
heavy quarkonium states.

Factorization formalism—For the production of a heavy
quarkonium state H of momentum p, A(P1) + B(P2) →
H(p) +X , the leading contribution from the channels in
Fig. 1 can be summarized in an extended factorization
formula [8, 10], given schematically by

dσA+B→H+X (p) ≈ (1)
∑

f

dσ̂A+B→f+X(pf = p/z)⊗DH/f (z,mQ)

+
∑

[QQ̄(κ)]

dσ̂A+B→[QQ̄(κ)]+X(p(1± ζ)/2z, p(1± ζ′)/2z)

⊗DH/[QQ̄(κ)](z, ζ, ζ
′,mQ) ,

where the factorization scale dependence is suppressed.
The first (second) term on the right-hand side gives the
contribution of LP (NLP) in mQ/pT . In the first term,
dσ̂A+B→f+X(pf ) is the cross section to produce an on-
shell parton of flavor f at short distances, which con-
tains all of the information about the incoming state
and includes convolutions with parton distributions when
A or B is a hadron. The sum over f runs over all
parton flavors, and DH/f (z,mQ) is the fragmentation
function for a heavy quarkonium state H from par-
ton f with momentum fraction z [5]. For H a J/ψ
or other heavy quarkonium, the dominant channel at
hadron colliders is gluon fragmentation, f = g. The sec-
ond term on the right-hand side in Eq. (1) is suppressed
by p−2

T relative to the first, and the quark-pair fragmenta-
tion function, DH/[QQ̄(κ)](z, ζ, ζ

′,mQ), has units of mass
squared, which are compensated by large invariants from
the hard-scattering function, dσ̂A+B→[QQ̄(κ)]+X(p(1 ±
ζ)/2z, p(1±ζ′)/2z), which describes production of an on-
shell, collinear heavy quark pair. The momentum frac-
tions z, ζ and ζ′ are defined as

p+Q = p+
1 + ζ

2z
, p+

Q̄
= p+

1− ζ

2z
,

p
′+
Q = p+

1 + ζ′

2z
, p

′+
Q̄

= p+
1− ζ′

2z
. (2)

By analogy to the single-parton case, z measures the
fractional momentum of the pair carried by the observed
quarkonium in this leading region, which is the same on
both sides of the cut in Fig. 1. Parameters ζ and ζ′ char-
acterize the sharing of the pair’s momentum between the
heavy quark and antiquark on either side of the cut in
the figure. In principle, these need not be the same. The

⊗ in Eq. (1) represents the convolution over the partons’
momentum fractions [10].
The predictive power of the factorization formula in

Eq. (1) relies on the perturbative calculation of the short-
distance hard parts and the universality of the fragmen-
tation functions. Like all pQCD factorization approaches
[11], the predictions can be systematically improved with
higher order perturbative calculations of partonic hard
parts in powers of αs, and the evolution of the fragmen-
tation functions. In Eq. (1), the perturbative hard parts
at both the LP and NLP capture the QCD dynamics at
distance scale of 1/pT , are independent of heavy quark
mass, and are the same for the production of all heavy
quarkonium states. For the LP, the hard parts are effec-
tively the same as those for inclusive production of any
single hadron at high pT and are available to both lead-
ing order (LO) and next-to-leading order (NLO) in αs
[12].
For the hard parts at NLP, we only need to calcu-

late the rate to produce a heavy quark pair with zero
relative transverse momentum, since the effect of rela-
tive transverse momentum will be further suppressed in
1/pT . The hard parts can be perturbatively calculated
order-by-order in powers of αs by applying the factoriza-
tion formula in Eq. (1) to the production of an asymptotic
state of a heavy quark pair [QQ̄(κ)] of momentum p with
various spin and color quantum numbers. For example,
the hard part for the subprocess, q+q̄ → [QQ̄(κ)]+g, can
be derived by applying Eq. (1) to heavy pair production
in quark-antiquark scattering,

dσ̂
(3)

q+q̄→[QQ̄(κ)]+g
(p) = dσ

(3)

q+q̄→[QQ̄(κ)]+g
(p) (3)

−dσ̂
(2)
q+q̄→g+g(pg = p/z)⊗D

(1)

[QQ̄(κ)]/g
(z,mQ) ,

where the superscript “(n)” indicates the order in αs.
The first term on the right of Eq. (3) is the differential
cross section for the subprocess given by the diagrams
in Fig. 2(a) and (b) plus three more diagrams. When
pT ≫ mQ, the square of diagram (a) clearly contributes
to the NLP, while the the square of diagram in (b) con-
tributes to both LP and NLP. We note that the interfer-
ence between the two contributes only to NLP. The sec-
ond term in Eq. (3) exactly removes the LP piece of this

subprocess, where dσ̂
(2)
q+q̄→g+g(pg) is the LO differential

cross section for q+ q̄ → g(pg)+ g and D
(1)

[QQ̄(κ)]/g
(z,mQ)

is the LO fragmentation function given by the (cut) di-
agram in Fig. 2(c). Since the second term on the right
of Eq. (3) removes a power mass singularity ∼ 1/m2

Q, it
is important to keep the heavy quark mass when evalu-
ating partonic diagrams and to set mQ → 0 (only) after
carrying out the subtraction [10].
In Eq. (1), the single parton fragmentation functions

DH/f (z,mQ) are defined in Ref. [5]. The operator def-
inition for DH/[QQ̄(κ)](z, ζ, ζ

′,mQ) depends on κ, which
represents the pair’s color and spin. For the heavy quark
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FIG. 2. Sample Feynman diagrams for q+ q̄ → [QQ̄(κ)](p)+g
subprocess. The diagram in (a) contributes to the short-
distance coefficient at NLP while the diagram in (b) con-
tributes to both the LP and NLP hard parts. The cut diagram
in (c) gives the LO gluon to heavy quark pair fragmentation
function.

pair moving in the “+z” direction with light-cone mo-
mentum components, pµ = (p+, (2mQ)

2/2p+, 0⊥), there
are singlet (1) and octet (8) color states, and four spin
states described by relativistic Dirac spin projection op-
erators: γ+γ5/4p

+, γ+/4p+, and γ+γi/4p+ with i = 1, 2,
for effective axial vector (a), vector (v), and tensor (t)
“currents”, respectively [10]. As an example, the oper-
ator definition of the axial vector/octet fragmentation
function can be written as

DH/[QQ̄(a8)](z, ζ, ζ
′) =

∑

X

∫

p+dy−

2π
e−i(p

+/z)y−

×

∫

p+dy−1 p
+dy−2

(2π)2
ei(p

+/2z)(1−ζ)y−
1 e−i(p

+/2z)(1−ζ′)y−
2

×
4

(N2 − 1)
〈0|ψi(0)

γ+γ5
4p+

(ta)ij ψj(y
−

2 )|H(p+)X〉

×〈H(P+)X |ψl(y
− + y−1 )

γ+γ5
4p+

(ta)lk ψk(y
−) |0〉 , (4)

where we have suppressed dependence on a factorization
scale. We also suppress gauge links along the minus light
cone, inserted between repeated color indices, which pro-
vide a gauge invariant definition of the operator [10]. The
links are in adjoint representation for index a, and fun-
damental representation for i, j, l, k. (We note that the
color matrices ta may be taken at any points along the
light cone.) Overall, the pair fragmentation functions are
given by matrix elements of nonlocal operators, and the
form is very similar to operator definitions of single par-
ton fragmentation functions, simply replacing the parton
field by the product of quark fields. They are also remi-
niscent of hadronic wave functions that connect multiple
partons to the hard scattering in the factorized expres-
sions for elastic amplitudes [13].
Similar to the single parton fragmentation functions,

heavy quark pair fragmentation functions like the one
defined in Eq. (4) are nonperturbative, but, universal.
They are boost invariant, and require renormalization.
They thus evolve in the usual sense, and depend upon
a factorization scale, chosen to match the short-distance
scale of the problem. It is natural to think of the choice of
factorization scale as the same for NLP as for LP, and in
general, a change of scale could mix them. This leads to a

closed set of general evolution equations for both LP and
NLP fragmentation functions, which will be addressed
elsewhere [10].

We note that there are further additive corrections at
the power of 1/p2T , such as those involving twist-4 par-
ton distributions, or twist-4 light-parton fragmentation
functions. These corrections, however, can be considered
small since they do not introduce natural enhancements
that scale with mQ in the probability to form a quarko-
nium, to compensate the suppression of 1/p2T .

Cross section and polarization—It is the fragmentation
functions that determine the absolute normalization of
perturbative calculations using the factorization formula
in Eq. (1), as well as the differences in the production
rate between various quarkonium states and their polar-
izations. Since only pairs with small relative momentum
are likely to form bound quarkonia, we may apply the
basic NRQCD factorization hypothesis for heavy quarko-
nium production to these fragmentation functions to re-
duce the unknown functions to a few universal constants
in the form of NRQCD matrix elements,

DH/f (z,mQ, µ) =
∑

c

df→[QQ̄(c)](z,mQ, µ)〈O
H
[QQ̄(c)]〉

DH/[QQ̄(κ)](z, ζ, ζ
′,mQ, µ) ,

=
∑

c

d[QQ̄(κ)]→[QQ̄(c)](z, ζ, ζ
′,mQ, µ)〈O

H
[QQ̄(c)]〉 , (5)

where the functions d are calculable, µ is a factoriza-
tion scale, and 〈OH

[QQ̄(c)]
〉 are local NRQCD matrix ele-

ments [4]. Although we cannot provide a full proof for
the NRQCD factorization in Eq. (5), it is reasonable to
evaluate the coefficient functions in Eq. (5) to estimate
the properties of fragmentation functions [5].

We can use this formalism to help understand the
source of the surprisingly large corrections to J/ψ pro-
duction in the CSM at NLO and NNLO with predomi-
nantly longitudinal polarization, in contrast to the small
and transversely polarized LO [14, 15]. To do so, we use
Eq. (1) to calculate NLP J/ψ cross sections at LO in αs
from a color singlet 3S1 pair. We estimate the O(αs) frag-
mentation functions from the diagrams in Fig. 3, where
the upper lines are fixed at p/2 and Dirac indices are con-
tracted with an NRQCD singlet projection with matrix
element essentially equivalent to the CSM. At order of
αs, only the [QQ̄(a8)] state fragments into a color singlet
3S1 heavy quark pair, while both [QQ̄(v8)] and [QQ̄(t8)]
states give vanishing contributions due to charge conjuga-
tion symmetry [10]. Defining r(z) ≡ z2µ2/(4m2

c(1−z)
2),
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we have

DL
[QQ̄(a8)]→J/ψ(z, ζ, ζ

′,mQ, µ) =
1

2N2

〈O
J/ψ
1(3S1)

〉

3mc
∆(ζ, ζ′)

×
αs
2π
z(1− z)

[

ln (r(z) + 1)−

(

1−
1

1 + r(z)

)]

,

DT
[QQ̄(a8)]→J/ψ(z, ζ, ζ

′,mQ, µ) =
1

2N2

〈O
J/ψ
1(3S1)

〉

3mc
∆(ζ, ζ′)

×
αs
2π
z(1− z)

[

1−
1

1 + r(z)

]

, (6)

where DL (DT ) is the pair-fragmentation function with
the pair longitudinally (transversely) polarized, and

∆(ζ, ζ′) =
1

4

∑

a,b

δ(ζ − a(1 − z))δ(ζ′ − b(1− z)), (7)

with a, b = −1, 1, and total unpolarized contribution,
D[QQ̄(a8)]→J/ψ = 2DT

[QQ̄(a8)]→J/ψ
+ DL

[QQ̄(a8)]→J/ψ
. In

deriving Eq. (6), we renormalized the UV divergence by
a cutoff µ on transverse momenta. Quark masses make
an IR cutoff on transverse momenta unnecessary. Other
renormalization schemes give similar results and will be
discussed elsewhere [10]. We find the corresponding LO
short-distance hard parts to produce the [QQ̄(a8)] state,

Hqq̄→[QQ̄(a8)]g = f1(ζ, ζ
′)
N2
c − 1

Nc

2(t̂2 + û2)

ŝ3
, (8)

Hgq→[QQ̄(a8)]q = f1(ζ, ζ
′)
2(ŝ2 + û2)

−t̂3
, (9)

Hgg→[QQ̄(a8)]g =
8N2

c

N2
c − 1

t̂û

ŝ3

(

t̂

û
+ 1 +

û

t̂

)

×

[

f1(ζ, ζ
′)

(

t̂

û
+ 1 +

û

t̂

)3

− f2(ζ, ζ
′)
5ŝ2

t̂û

]

, (10)

where f1(ζ, ζ
′) =

[

1 + ζζ′ − 4
N2

c

]

/
[

(1− ζ2)(1 − ζ′2)
]

,

and f2(ζ, ζ
′) = ζζ′/

[

(1− ζ2)(1− ζ′2)
]

, and an overall

factor of (4πα3
s/ŝ)δ(ŝ+ t̂+ û) for the invariant cross sec-

tion E dσAB→H/d
3p was suppressed [8]. The ŝ, t̂, and û

are the standard parton-level Mandelstam variables.
With both fragmentation functions and LO hard scat-

tering functions, we can compute NLP cross sections that
can be compared to NLO CSM cross sections [7, 15–17].
Using the CTEQ6L parton distributions [18], µ = pT for
factorization and renormalization scales, mc = 1.5 GeV,

and 〈O
J/ψ
1(3S1)

〉 = 1.32 GeV3, we calculate and plot the un-

polarized cross section as a function pT in Fig. 4 (upper
panel). We see that the factorization-based cross section
shows much the same enhancement above the LO CSM
as the full NLO result in CSM. Actually, our calculated
NLP cross section with the estimated O(αs) fragmen-
tation functions reproduces as much as eighty percent
of the full NLO CSM result. The difference should be
due mainly to O(αs) corrections to the hard scattering
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c c

+ ...

FIG. 3. Leading order Feynman diagrams represent the frag-
mentation of a heavy quark pair to another heavy quark pair.
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FIG. 4. J/ψ cross section (upper panel) and polarization
(lower panel) as a function of pT . The solid lines are computed
from the NLP term in Eq. (1) with fragmentation functions
given by Eq. (6); the dashed line is LO CSM cross section as
in Ref. [16], and all in [nb/GeV].

functions from the color singlet [QQ̄(v1)] channel. With
higher order fragmentation functions from other [QQ̄(κ)]
states, the full NLP cross section at LO in αs could be
larger than the solid line in Fig. 4. Similarly, we calculate
the J/ψ polarization (lower panel), as measured by the
parameter α = (σT − σL)/(σT + σL) in terms of trans-
verse (longitudinal) cross section σT (σL). Our result is
consistent with that in Refs. [14, 15]. We regard these
results as compelling evidence for the phenomenological
relevance of the power expansion.

Summary—We have argued that a practical strategy for
the phenomenology of heavy quarkonium production at
high pT is to expand the cross sections first in the large
scale pT , and then in the coupling, αs, and have pre-
sented a new pQCD factorization formalism for quarko-
nium production including the first non-leading powers
in mQ/pT . This approach enables us to resum perturba-
tive logarithms into the fragmentation functions, to ana-
lyze systematically the influence of the larger color singlet
matrix elements despite their suppressed pT -dependence,
and to resolve some of the mystery associated with the
discovery of large high order corrections to color singlet
cross sections. We have found that heavy quarkonia pro-
duced from pair fragmentations are likely to be longitu-
dinally polarized, in contrast to single parton fragmen-
tation. The observed quarkonium polarization should be
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a consequence of the competition of these two leading
production channels.
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