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Multiferroic behavior in trimerized Mott insulators
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We demonstrate multiferroic behavior in trimerized Mott insulators through interplay between spins and
electric dipole moments resulting from electronic charge fluctuations in frustrated units [1]. The model consists
of stacked triangular layers of trimers with small inter-trimer exchange interactions J ′ and J ′′. Ferroelectric
states coexist with ferro- or antiferromagnetic orderings depending on the value of the magnetic field H and the
sign of the inter-layer exchange J ′′. The electric polarization undergoes abrupt changes as a function of H .

PACS numbers: 72.80.Sk 75.85.+t 75.25.Dk

Introduction.—Frustrated Mott insulators have been the fo-
cus of research during the last decades [2]. The combination
of geometric frustration with strong electron-electron interac-
tions often leads to unusual collective behaviors. For instance,
geometric frustration is a precondition for having non-uniform
electronic charge distributions in the Mott phase of half-filled
Hubbard models [1]. This requirement implies that the lattice
must contain triangular units of magnetic ions. The simplest
unit is an equilateral trimer of S = 1/2 ions, like Cu2+, whose
ground states are two S = 1/2 doublets. This is true as long
as the spin is half-integer. Since the spin quantum number is
not enough to characterize each ground state, it is necessary
to introduce an effective orbital degree of freedom (DOF) de-
scribed by a τ = 1/2 pseudospin variable [1]. While (τx, τy)
is proportional to the effective electric polarization operator,
τz is proportional to the orbital magnetic moment produced
by a current density that circulates around the trimer [1].

Materials that naturally include spin and orbital DOF ex-
hibit a variety of complex behaviors [3]. In particular, or-
bital ordering often reduces magnetic frustration by creating
disparities between effective exchange constants [4]. While
the d-orbital DOF of transition metals is related to electronic
charge distributions with different quadrupolar moment, the
orbital DOF of triangular molecules carries a net electric
dipole moment. Thus, collective behaviors of coupled trimers
can lead to multiferroic phenomena or magneto-electric ef-
fects arising from the interplay between spin and orbital DOF.

Trimers of magnetic ions are rather common in organic and
inorganic compounds [5–13]. They also exist in crystalline
systems such as spin tubes, but the inter- and intra-trimer
exchange interactions are of comparable magnitude [14–16].
Although La4Cu3MoO12[17, 18] is an ideal realization of
weakly-coupled trimers, the trimer superlattice does not fa-
vor a ferroelectric ordering [19]. The advantage of organic
environments is their flexibility for designing specific trimer
lattices by choosing adequate ligand fields. While intra-
molecular exchange in frustrated molecules is a current topic
of focus in magnetochemistry, little is known about the col-
lective behaviors induced by inter-molecular couplings.

The spirit of this Letter is to bridge the gap between molec-
ular and crystal magnets by demonstrating that multiferroic
collective phenomena can arise from inter-trimer exchange.
After noticing that each trimer carries an internal electric

dipole moment, it is natural to ask what is the effective cou-
pling between these moments. The answer depends on the
nature of the trimer lattice and the sign of the exchange inter-
action [19, 20]. By demonstrating that a trimerized triangular
lattice leads to ferrielectric ordering, we provide guiding prin-
ciples for designing new multiferroic materials.

We start by considering a Hubbard lattice of stacked tri-
angular layers of trimers with small inter-trimer hopping and
large on-site Coulomb repulsion U . We find multiferroic
ground states that remain stable up to magnetic fields above
which the magnetization (M ) and the electric polarization (P )
change discontinuously. These multiferroic states and strong
magneto-electric effects are direct consequences of the effec-
tive interaction between spin and orbital DOF.

Model.— The half-filled Hubbard model on the trimerized
stacked triangular lattice of Fig. 1 is

H = −
∑
ijσ

tij

(
c†iσcjσ + H.c.

)
+
U

2

∑
i

(ni − 1)
2
, (1)

where c†iσ (ciσ) is the creation (annihilation) operator of an
electron with spin σ at a site i, ni =

∑
σ c
†
iσciσ is the number

operator, and the hopping amplitudes are tij = t for i and j
in the same trimer, and tij = t′(t′′) when i and j are nearest-
neighbor sites belonging to different trimers of the same layer
(adjacent layers). In what follows we consider the strong cou-
pling limit U � t, though we will also comment on the inter-
mediate coupling regime U & t.

WhenU � t, the half-filled Hubbard model can be reduced
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FIG. 1: (Color online.) Trimerized triangular lattice. Shaded trian-
gles represent trimers with dominant hopping amplitude. The layers
are stacked along the c-direction. A,B,C are the indices for the
three trimer sublattices.



to a Heisenberg Hamiltonian, Hspin, by applying degenerate
perturbation theory to the second order in tij :

Hspin = J
∑

r,µ>η

sµ,r · sη,r + J ′
∑

r,η,µ6=η

sη,r · sµ,r+eη

+ J ′′
∑
r,η

sη,r · sη,r+u3
− gµBH

∑
r,µ

szµ,r. (2)

Here we have added a Zeeman term to include the effect of
an external field H (g is the gyromagnetic factor and µB is
the Bohr magneton). We have also refined our notation by in-
troducing the trimer coordinate, r =

∑
i=1,2,3 niui, with ui

being primitive vectors for the trimer lattice and µ, η = 1, 2, 3
denoting the three ions of each trimer. eη are relative vec-
tors between intra-layer nearest-neighbor trimers (see Fig. 1).
Hspin also describes systems of coupled spin tubes [21–26].

The reduction ofH to a spin Hamiltonian for U/t� 1 sug-
gests that only magnetic DOF remain active at low energies.
However, virtual charge fluctuations can produce electric cur-
rents in loops or electric dipoles [1]. We will see below that
this is indeed the case for the ground states of H as long as
t � t′, t′′. The exchange constants J, J ′ and J ′′ are pro-
portional to t2/U , t′2/U and t′′2/U , respectively. Therefore,
spin-trimers are weakly coupled (J � J ′, J ′′) for t � t′, t′′,
and that will be the regime of interest from now on. Although
H leads to an antiferromagnetic (AFM) inter-layer exchange,
J ′′, we will also consider the FM case, which can be realized
for super-exchange paths through intermediate ions [27–29].

A single trimer has four-degenerate ground states, namely
two S = 1/2 doublets, that can be labeled as |Sz, τz〉r, where
Sz and τz are the (±1/2) eigenvalues of

Szr = sz1,r + sz2,r + sz3,r, τ
z
r =

2√
3
s1,r × s2,r · s3,r. (3)

τzr is the scalar spin chirality that is proportional to the effec-
tive current density operator in the trimer r. It closes an SU(2)
algebra with the operators

τxr =
1

3
[2s2,r · s3,r − s1,r · (s2,r + s3,r)] ∝ P xr , (4)

τyr =
1√
3
s1,r · (s2,r − s3,r) ∝ P yr , (5)

which are proportional to the x and y components of the trimer
electric dipole moment [1]. These spin and orbital trimer op-
erators commute with each other: [ταr , S

β
r′ ] = 0.

The S = 3/2 excited states of the single trimer can be pro-
jected out as long as the single-trimer gap of 3J/2 is much
larger than J ′ and |J ′′|. The low-energy effective Hamilto-
nian is simplyHeff = PHspinP , where P is the projector onto
the subspace spanned by the direct product of single-trimer
ground states |Sz, τz〉r = |±1/2,±1/2〉r [30–33]. SinceHeff
only includes contributions from inter-dimer interactions, we
can use that Psµ,r · sη,r′P = Psµ,rP · Psη,r′P . It is then
convenient to introduce the projected spin operators:

s̃µ,r ≡ Psµ,rP =
1

3
Sr [1− 4τr · nµ] , (6)

where nµ = (cosϕµ, sinϕµ, 0), with ϕ1 = 0, ϕ2 = −2π/3
and ϕ3 = 2π/3, are parallel to the displacement vectors from
the center of the trimer to each spin site. s̃µr must be pro-
portional to Sr because this is the only vector under spin ro-
tations in the single-trimer ground state subspace. The pro-
portionality factor cannot include τzr because it is odd under
time-reversal. This implies that Heff will only include the τx

and τy orbital variables associated with the local electric po-
larization of each trimer. When the spin operators of Eq.(2)
are replaced by the projected operators of Eq. (6), we obtain

Heff =
2J ′

9

∑
r,η

Sr · Sr+eη

×
[
1− 4τr · nη + 2τr+eη

· nη − 8τr+eη
· nητr · nη

]
+

J ′′

3

∑
r

Sr · Sr+u3

[
1 + 8(τxr τ

x
r+u3

+ τyr τ
y
r+u3

)
]

− gµBH
∑
r

Szr . (7)

The continuous symmetry of the inter-layer orbital coupling
is a consequence of the C3 lattice symmetry.

Above the saturation field.—We will first consider the case
of magnetic fields that are large enough to polarize each trimer
into the Szr = 1/2 state [34]: H > Hsat. Since Sr · Sr+u3 =
Sr · Sr+eη = 1/4 holds in this case for the low-energy sector
Sfp ofHeff, the projection PSfp ofHeff into Sfp leads to:

H′eff ≡ PSfpHeffPSfp = −4J ′

9

∑
r,η

τr+eη · nη τr · nη

+
2J ′′

3

∑
r

(
τxr τ

x
r+u3

+ τyr τ
y
r+u3

)
+ const . (8)

Here, we have used that
∑
µ nµ = 0. H′eff is an effective

model for the orbital DOF which clearly shows that magnetic
exchange interactions induce effective exchange couplings be-
tween the electric dipole moments. According to Eq. (8), an
AFM intra-layer exchange, J ′ > 0, induces a ferroelectric
(FE) exchange between electric dipoles in the same layer. In
contrast, a FM (AFM) inter-layer coupling results in a FE [an-
tiferroelectric (AFE)] coupling along the c-direction. We will
now consider both possibilities by using a semiclassical ap-
proach and assuming that magnetic and orbital orderings are
three-sublattice structures. Since the effective interaction is
XY-like, we will assume that 〈τzr 〉 = 0, ∀r. The XY com-
ponents are determined by three variational parameters Φl:
〈τxr 〉 = (σr/2) cos Φl and 〈τyr 〉 = (σr/2) sin Φl for r ∈ l,
where l = A,B,C is the three-sublattice index of the trimers
(Fig. 1) and σr = 1 [σr = (−1)n3 ] for J ′′ < 0 (J ′′ > 0) (n3
is the index of layers). The mean-field (MF) energy per site
that results from Eq. (8) is:

εH>Hsat = −J
′

18

∑
l=A,B,C

cos (Φl − Φl+1) + const . (9)

It is clear from this expression that the global minimum of
εH>Hsat is obtained for Φl = Φ. This solution corresponds to

2



a fully polarized FE (AFE) state for J ′′ < 0 (J ′′ > 0); see
Figs. 2(b) and (d). The arbitrary value of Φ implies that the
MF energy is invariant under global orbital rotations along the
z-axis, i.e., there is U(1) orbital symmetry at the MF level.

The next step is to introduce Holstein-Primakov (HP)
bosons to describe the orbital fluctuations around the MF so-
lution: τzr + iτr · Ω̂′ =

√
2τ − nar ar, τzr − iτr · Ω̂′ =

a†r
√

2τ − nar and τr · Ω̂ = τ − nar for J ′′ < 0, where
Ω̂ = (cos Φ, sin Φ, 0), Ω̂′ = (sin Φ,− cos Φ, 0), nar = a†rar
and τ = 1/2. The case for J ′′ > 0 leads to the same “orbital-
wave” Hamiltonian given below by a trivial gauge transfor-
mation. In terms of the Fourier modes, ak and a†k, the Hamil-
tonian to order 1/τ is

Hsw
τ,H>Hsat

=
∑
k

[
εka
†
kak +

γk
2

(
a†ka
†
−k + aka−k

)]
,

εk =
2

3
(J ′ − J ′′)− γk,

γk =
2J ′

9

∑
η

sin2 (Φ− ϕη) cosk · eη −
J ′′

3
cos kz. (10)

By performing a Bogoliubov transformation, we obtain
Hsw
τ,H>Hsat

=
∑

k[ωk(α†kαk + 1/2) − εk/2] with ωk =√
ε2k − γ2k. This dispersion relation has a zero mode at k = 0

due to the U(1) invariance of the MF solution. However, after
including corrections due to zero-point fluctuations, the en-
ergy density, ε′ = εH>Hsat + ∆ε with ∆ε = −(J ′ − J ′′)/3 +∑

k ωk/2, is minimized for Φ = (2n+1)π/6, with n being an
integer number. Quantum fluctuations reduce the number of
ground states according to the six-fold symmetry of H′eff and
the maximum splitting between states with different values of
Φ is of order 10−4J ′. Consequently, higher order corrections
in our 1/τ expansion induce a very small gap in comparison
to the exchange constants. For this reason, we will say that
the orbital k = 0 mode is a quasi-Goldstone mode.

States for H < Hsat.—Now we consider the general case
of arbitrary magnetic field. We propose a three-sublattice
ordering in each layer and distinct even and odd layers for
J ′′ > 0. We use (θbl , φ

b
l ) to represent 〈Sr〉 and assume

〈τxr 〉 = (1/2) cos Φbl , 〈τyr 〉 = (1/2) sin Φbl and 〈τzr 〉 = 0 for
r ∈ (b, l) with b = e, o and l = A,B,C (θel = θol , φel = φol
and Φel = Φol are assumed for J ′′ < 0). The MF energy
density resulting from Eq. (7) is:

εmf =
J ′

36

∑
b,l>l′

[
sin θbl sin θbl′ cos

(
φbl − φbl′

)
+ cos θbl cos θbl′

]
×
[
1− cos

(
Φbl − Φbl′

)]
+
J ′′

36

∑
l

[sin θel sin θol cos (φel − φol ) + cos θel cos θol ]

× [1 + 2 cos (Φel − Φol )]−
gµBH

12

∑
b,l

cos θbl . (11)

The phase diagram obtained by minimizing (11) is shown in
Fig. 2(a). As we already discussed, a FM-FE or FM-AFE1
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FIG. 2: (Color online.) (a) The MF phase diagram. The insets show
M(H) and P (H) for J ′′ < 0 (left) and J ′′ > 0 (right). The
dashed line shows an orbital transition due to the zero-point fluctua-
tion. Also shown are schematic pictures of the MF solution [the red
(yellow) arrows represent spins (orbitals)]: (b) the FM-FE, (c) FIM-
FIE, (d) FM-AFE1, (e) FIM-AFE2, and (f) CAFM-FIE states. The
solid (dashed) lines indicate in-layer antiparallel (parallel) orbitals.
Zero-field states are given up to an SU(2) global spin rotation.

state is stabilized for H > Hsat depending on the sign of
J ′′. When H < Hsat, the MF ground state for J ′′ < 0 is
the ferrimagnetic (FIM)-ferrielectric (FIE) state of Fig. 2(c)
with an in-plane “up-up-down” (UUD) orbital ordering that
accompanies a corresponding UUD spin configuration, e.g.,
(ΦA,ΦB ,ΦC) = (Φ,Φ,Φ+π) and (SA,SB ,SC) = (↑, ↑, ↓)
(a permutation of sublattice-indices does not change the en-
ergy). This state leads to 1/3 plateaux both in M(H) and
P (H) that change discontinuously at H = Hsat [see the in-
set of Fig. 2(a)]. The energy is minimized because the orbital
ordering reduces the effective magnetic frustration. This is the
reason why the ground state differs from the 120◦ structure for
the spin-only AFM Heisenberg model on the triangular lattice.

On the other hand, the zero-field solution for J ′′ > 0 is the
AFM-FIE state shown in Fig. 2(f) [the solution is given up to
a global SU(2) spin rotation and θ1 = θ2 = π/2], which is
also a collinear spin state. In contrast to the J ′′ < 0 case, a fi-
niteH induces the coplanar canted AFM (CAFM) state shown
in Fig. 2(f), where M(H) increases linearly while P (H) re-
mains constant at a 1/3 polarization plateau. Interestingly, the
FIM-antiferroelectric (AFE2) state of Fig. 2(e) is stabilized for
J ′′/J ′ . 4.635 and intermediate field, leading to a 1/3 mag-
netization plateau as in the J ′′ < 0 case. M(H) increases dis-
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continuously while P (H) vanishes abruptly at the first-order
transition to this state. The FIM-AFE2 state [see Fig. 2(e)]
is such that in-layer FE bonds are oriented along different di-
rections on adjacent layers. This implies that there is an ac-
cidental extensive degeneracy at the MF level that is removed
by fluctuations. However, the behavior of M(H) and P (H),
namely the large magneto-electric effect, is the same for all
the degenerated states. As for J ′′ < 0, the mechanism for
stabilizing these states is a suppression of magnetic frustra-
tion by orbital ordering. For any J ′′ > 0 the transition to the
FM-AFE1 state [Fig. 2(d)] is of first order.

Finally, we include the spin-wave analysis for H < Hsat.
We mainly discuss the J ′′ < 0 in what follows (a more com-
prehensive analysis will be given elsewhere [35]). By choos-
ing one of the FIM-FIE configurations, (ΦA,ΦB ,ΦC) =
(0, 0, π) and (SA,SB ,SC) = (↑, ↑, ↓), we introduce the HP
bosons, blr (alr), for representing the spin (orbital) fluctua-
tions on the sublattice l. Spin and orbital fluctuations are de-
coupled in the linear spin-wave Hamiltonian. Moreover, the
orbital Hamiltonian can be reduced to Eq. (10) simply by re-
defining ar ≡ alr for each r ∈ l = A,B,C. This observation
implies the stability of the the FIM-FIE state against orbital
fluctuations, and the presence of the quasi-Goldstone mode.
The spin part of the spin-wave Hamiltonian is:

Hsw
S,FIM-FIE =

1

2

∑
k

(
B†k,B−k

)( Pk Qk

Q∗−k P ∗−k

)( Bk
B†−k

)
−N

(
gµBH

6
+

4J ′

9
− J ′′

2

)
, (12)

where Bk = (bAk, bBk, bCk) and blk is the Fourier transform
of blr. The matrix elements of Pk and Qk are

Pk =

 dk γ−k 0
(γ−k )∗ dk 0

0 0 d′k

 , Qk =

 0 0 γ+−k
0 0 γ+k
γ+k γ+−k 0

 , (13)

where γ±k = (J ′/9)
∑
η

[
1± 2 cos2 (Φ− ϕη)

]
eik·eη , dk =

(2J ′/3)−J ′′ (1− cos kz)+gµBH and d′k = dk+(2J ′/3)−
2gµBH . This Hamiltonian can be diagonalized by solv-
ing

∣∣(Pk +Qk) (Pk −Qk)− ω2
k

∣∣ = 0 [36] and a positive-
defined spectrum is obtained for anyH < Hsat, indicating that
the FIM-FIE state is locally stable. The spectrum is gapped
for 0 < H < Hsat. This also implies stability of the 1/3 mag-
netization plateau for J ′′ > 0 (i.e., the FIM-AFE2 state) at
least for sufficiently large H and small J ′′ because both states
are connected for J ′′ = 0. Both spin and orbital fluctuations
contribute to the zero-point energy that determines the precise
structure of the orbital ordering. We find that the effect of spin
fluctuations competes against the effect of orbital fluctuations:
the energy minima of the spin contribution are Φmin = nπ/3
in contrast to Φmin = (2n + 1)π/6 for the orbital contribu-
tion. The ground state energy turns out to be almost insensi-
tive to H/J ′ but it is significantly affected by J ′′/J ′, which
causes a phase transition from Φmin = nπ/3 for the quasi-
2D region −0.8 . J ′′/J ′(< 0) to Φmin = (2n + 1)π/6 for
J ′′/J ′ . −0.8 [see Fig. 2(a)].

Conclusions.—In summary, the interplay between spin and
orbital DOF of weakly-coupled trimers leads to multifer-
roic behavior and strong magneto-electric effects. Frustration
plays a fundamental role in different stages of this problem.
While it is crucial for the emergence of orbital DOF that carry
electric dipole moments [1], it is also essential for stabiliz-
ing the multiferroic orderings depicted in Fig. 2. The quasi-
Goldstone orbital mode of these ordered states can be indi-
rectly observed in the low temperature (T ) regime by measur-
ing its T d (d is the spatial dimensionality) contribution to the
specific heat for T higher than the tiny orbital gap. Spin exci-
tations give a negligible contribution to the specific heat in the
plateaux phases because of the much larger spin gap.

Our perturbative approach for weakly-coupled trimers can
be extended to the intermediate-coupling regime U & t as
long as |t| � t′, t′′. The effective spin-orbital Hamiltonian
for U & t must be derived directly from H because Hspin no
longer reproduces the low-energy spectrum ofH. The electric
dipole of each trimer is much stronger in this regime (com-
parable to ea, where e is the electronic charge and a is the
trimer lattice parameter) and can lead to polarizations of order
1µC/cm2 if we assume a trimer density of 10−3Å−3. More-
over, since the effective inter-trimer coupling sets the scale of
the ordering temperature Tc, it is possible to reach values of
Tc comparable or even higher than ambient temperature.

Quantum magnets comprising weakly-coupled dimers be-
came the focus of intense research during the last two
decades [37, 38]. We hope that the phase diagram presented in
Fig. 2 will trigger a similar effort in the search for realizations
of weakly-coupled trimers. We note that typical perturbations
of triangular molecules, such as deviations from equilateral
shape or intra-trimer Dzyaloshinskii-Moriya interactions, will
not induce important changes in our phase diagram as long as
they are small in comparison to J ′ and J ′′.
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