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Using micromechanical force magnetometry, we have measured the magnetization of the strong-
leg spin-1/2 ladder compound (C7H10N)2CuBr2 at temperatures down to 45mK. Low-temperature
magnetic susceptibility as a function of field exhibits a maximum near the critical field Hc at which
the magnon gap vanishes, as expected for a gapped one-dimensional antiferromagnet. Above Hc a
clear minimum appears in the magnetization as a function of temperature as predicted by theory.
In this field region, the susceptibility in conjunction with our specific heat data yields the Wilson
ratio RW. The result supports the relation RW = 4K, where K is the Tomonaga-Luttinger-liquid
parameter.

PACS numbers: 75.10.Jm 71.10.Pm 75.78.-n 75.50.Ee

One of the crucial parameters that characterize Fermi
liquids, such as conduction electrons and liquid 3He at
low temperatures, is the Wilson ratio [1]

RW =
4

3

(

πkB
gµB

)2
χ

C/T
, (1)

the dimensionless ratio of the temperature-independent
magnetic susceptibility χ to the coefficient of the T -linear
specific heat C. By dividing out the contribution of en-
hanced mass, which enters both χ and C, this parameter
quantifies spin fluctuations that enhance the susceptibil-
ity. For this reason, it serves as a powerful tool to classify
heavy fermion systems [2]. For instance, RW is 2 for the
S=1/2 Kondo lattice in the single-impurity limit [1] in
contrast to 1 for non-interacting fermions.

In liquid 3He, the archetypical Fermi liquid, RW varies
only weakly with pressure unlike the strongly pressure-
dependent effective mass and is close to 4, the approxi-
mate limiting value for the Hubbard model with critical
on-site repulsion [3]. This has promoted the view that
quasiparticles in liquid 3He are nearly localized [4].

In one dimension (1D), where an arbitrarily weak in-
teraction renders the quasiparticle lifetime shorter than
~/(E − EF) because of stringent constraints the spa-
tial dimension imposes on energy and momentum con-
servation in scattering processes, the Fermi liquid the-
ory breaks down entirely, giving way to the Tomonaga-
Luttinger liquid (TLL) as the correct low-energy descrip-
tion of fermions [5]. In a TLL, low-lying excitations are
massless, collective bosonic modes instead of fermionic
quasiparticles endowed with effective mass. Nonetheless,
the TLL and the Fermi liquid are alike in that in both
systems, χ is independent of temperature T and C is lin-
ear in T . As a result, the Wilson ratio remains a crucial

parameter in 1D—in fact even more crucial than in three
dimensions, since a large variety of interacting systems
in 1D fall into the TLL universality class and since each
branch of bosonic modes in a given TLL is completely
specified by just two parameters, the velocity v and the
TLL parameter K [5, 6].

For instance, the Wilson ratio of 1D electrons contains
only the velocities of spin and charge excitations, vσ and
vρ, and the TLL parameter Kσ =1 of the spin sector:
RW = 2Kσ(1+vσ/vρ)

−1 [7]. In the non-interacting limit,
where vσ = vρ =1, RW is again 1 as expected. With
on-site Coulomb repulsion, vσ decreases whereas vρ in-
creases, resulting in RW approaching 2 in the strongly
repulsive limit [7, 8].

Another example of a TLL is a 1D antiferromagnet
in a gapless regime—such as a spin-1 linear chain and a
spin-1/2 ladder, both in magnetic fields larger than the
magnon gap, or a spin-1/2 linear chain in zero field as
well as in magnetic fields [6]. There, χ=(gµB)

2K/(πv)
and C = πk2BT/(3v), and thus the Wilson ratio must obey
the relation

RW = 4K, (2)

which to our knowledge has not been noted before [9]. It
is remarkable that except for the trivial numerical fac-
tor, the Wilson ratio is the TLL parameter K, which
governs the exponents of all spin correlation functions,
including dynamic ones. This is not surprising, however,
since TLLs are quantum critical [10] and, consequently,
their dynamic properties are inextricably linked to static
properties [11].

Despite the significance illustrated by these exam-
ples, the Wilson ratio has never been determined ex-
perimentally in a TLL because of the lack of a good
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material. Here we report the Wilson ratio of a strong-
leg S=1/2 Heisenberg spin-ladder antiferromagnet in
magnetic fields, determined from accurate microme-
chanical force magnetometry and specific-heat measure-
ments. The result is in agreement with a density-matrix
renormalization-group calculation in conjunction with
Eq. 2.

For these measurements, we have chosen
(C7H10N)2CuBr2, known as DIMPY, in which Cu2+

spins form two-leg ladders along the a axis of the
monoclinic lattice [12–16]. The ratio x= Jleg/Jrung
between the leg exchange and the rung exchange is
2.2(2) in this material, placing it in the rare, strong-leg
regime. The zero-field magnetic excitations measured
by inelastic neutron scattering are strongly dispersive
along the ladder direction but dispersionless, within the
instrumental resolution, along orthogonal directions.
Specific heat shows no long-range magnetic order down
to 150mK [13] demonstrating that DIMPY is an excel-
lent 1D system with a gapless, TLL phase above the
critical field Hc=3.0(3)T, at which the magnon gap
vanishes.

Magnetization measurements were performed on a
13.8µg single crystal with 67% deuteration using a mi-
cromechanical Faraday balance [17]. The device was
loaded into a dilution refrigerator with the crystallo-
graphic c axis of the sample parallel to the magnetic
field. A separate coil provided a field gradient of 2Tm−1,
which exerted the force ~F = ~M · ~∇ ~H on the sample,
where ~M is the magnetization. The device is designed to
directly measure this force, with negligible contributions
from magnetic torque. For a given field gradient, the
output of the device is directly proportional to M . The
proportionality constant was obtained by comparing, at
1.8K and 4.3K, the device outputs with the magneti-
zation curves of a 30.5mg single crystal measured in a
SQUID magnetometer.

Figure 1(a) shows the magnetization of DIMPY as a
function of magnetic field. At 300mK the magnetiza-
tion is nearly zero at low fields except for an evident
contribution of paramagnetic impurities, whose concen-
tration is about 0.9%. Upon reaching the critical field
Hc, at which the magnon gap closes, the magnetization
increases rapidly [14]. This signature of Hc becomes less
prominent as the temperature is raised. At 4.3K, higher
than the magnon gap ∆ = 3.7(1)K [13], the magnetiza-
tion curve is featureless, with a roughly constant rate of
increase throughout the field range of our experiment.

Differentiating the magnetization with respect to the
magnetic field yields the magnetic susceptibility as a
function of the field, as shown in Fig. 1(b). The suscep-
tibility is temperature-independent within our resolution
at least up to 300mK. In a truly 1D gapped antiferro-
magnet, the zero-temperature magnetic susceptibility ex-
hibits a square-root divergence at Hc, a singularity char-
acteristic of free 1D fermions to which the system can be
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FIG. 1. (Color online). (a) Magnetization of DIMPY as a
function of magnetic field at 300mK and 4.3K. The open
circles represent DMRG results for x=2.0 and g=2.2. (b)
Magnetic susceptibility as a function of magnetic field.

mapped. As the temperature rises, this singularity be-
comes a rounded peak nearHc [18]. Our low-temperature
data clearly exhibit such a peak, providing strong evi-
dence for the excellent 1D character of DIMPY in support
of heat-capacity and inelastic neutron-scattering results
[13].

Another characteristic feature of a gapped 1D antifer-
romagnet is a local minimum in the magnetization at
temperature Tm, a minimum that marks the upper limit
of the TLL temperature regime [18–20]. Such minima
have been observed in the S=1 linear-chain compound
NDMAP [21] and inferred for the S=1/2 strong-rung
ladder material BPCB [22], but not in any other 1D an-
tiferromagnets because of material problems such as the
presence of field-induced staggered fields and too high a
critical field for the present technology. To further test
the prediction of Refs. [18–20] and, at the same time, to
ensure that our low-temperature susceptibility data come
from the TLL regime, we have measured the magnetiza-
tion as a function of temperature for different magnetic
fields H ≥ Hc, as shown in Figs. 2(a) and (b). At 4T,
slightly above Hc, the magnetization reaches a minimum
at about 0.7K. The minimum at higher fields occurs at
even higher temperatures, assuring that our susceptibil-
ity data at 45mK and 300mK are indeed from deep in
the TLL regime, at least at and above 4T.

Figure 2(c) presents Tm from the data as a function of
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FIG. 2. (Color online). (a) Magnetization of DIMPY as
a function of temperature. Symbols are experimental data,
from which the magnetization of paramagnetic impurities has
been subtracted; solid lines are quantum Monte Carlo simu-
lations. Fields are, from bottom to top: 3T, 4T, 4.5 T, 5.5 T.
(b) From bottom to top: 7.5 T, 9T. (c) Position of the mag-
netization minimum from the data for H ≥ 4 T as a function
of magnetic field. Dashed line is the universal behavior, Eq. 3,
for free fermions.

magnetic field, along with the universal relation

Tm = 0.76238
gµB

kB
(H −Hc) (3)

predicted by the free fermion theory with no adjustable
parameters [20]. At fields near Hc, where the density of
fermions to which the ground-state magnons are mapped
is small, the theory and experiment are in excellent agree-
ment. As the field increases, Tm falls below the universal
relation, as predicted by QMC simulations [20]. This
downward deviation is caused by repulsion between the
fermions.
For further comparison with the experiment, we have

performed QMC simulations of the magnetization of an
S=1/2 ladder consisting of 120 rungs, and have found
that the g factor g=2.2 and the exchange ratio x=2.0,
which is consistent with 2.2(2) mentioned earlier, give
the best overall agreement with the data, as shown in
Figs. 2(a) and (b). At each temperature and magnetic
field, 50 runs of 1.2× 107 Monte Carlo steps were used
for averaging. The simulations and the experimental data
share two important features. First, the magnetization

FIG. 3. (Color online). (a) Magnetic specific heat, Cm, of
fully deuterated DIMPY, shown as Cm/T . (b) Ordering tem-
perature as a function of magnetic field. Solid circles are from
specific-heat peaks. Open circles are from the magnetocaloric-
effect data shown in the inset, where pink and blue lines rep-
resent the sample temperature during upward and downward
field sweeps, respectively. Other lines are guides to the eye.

minima appear at comparable temperatures, except at
3T which is either at, or very close to, Hc. Second,
as the magnetic field increases, the minimum becomes
shallower. Moreover, density-matrix renormalization-
group (DMRG) calculations with g=2.2 and x=2.0—
the values found by the QMC simulations—yield zero-
temperature magnetization in excellent agreement with
the 300mK data, as shown in Fig. 1(a).
With the excellent one-dimensionality of DIMPY

firmly established, we proceed to determine the Wil-
son ratio RW. For this purpose, we have measured the
specific heat of a 6.6mg single crystal of fully deuter-
ated DIMPY [23] using relaxation calorimetry [24], with
the magnetic field applied along the c axis as in the
magnetization measurements. Phonon, nuclear-spin, and
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nuclear-quadrupole contributions to the specific heat
were subtracted as described in Ref. [13] to obtain the
magnetic specific heat Cm. At 6T, 7T, and 8.9T, Cm

exhibits T -linear behavior, demonstrated by constant
Cm/T , at temperatures below about 1K, except for a
sharp peak signalling ordering at a lower temperature,
as shown in Fig. 3(a). To detect ordering at magnetic
fields close to Hc, we have also made magnetocaloric-
effect measurements in the same calorimeter with the
same sample, as shown in the inset to Fig. 3(b). From
the specific-heat peaks and the magnetocaloric effect, the
boundary of the ordered phase has been mapped to 18T,
as shown in Fig. 3(b). The phase boundary is highly
asymmetric, peaking at about 8.9T, where the fermion
velocity is at or near maximum [13].

Ordering found in this sample at temperatures up to
340mK is in strong contrast to the absence of ordering
in a 67% deuterated sample at temperatures down to
150mK [13], indicating that full deuteration in DIMPY
dramatically enhances interladder exchanges. To further
examine the effect of full deuteration, we have measured
the magnetization of the sample as a function of the mag-
netic field at 1.8K and 4.3K in the SQUID magnetome-
ter. The results were identical to those of the 67% deuter-
ated sample within 2.0%, ensuring that the intra-ladder
exchanges Jleg and Jrung—which govern the TLL physics
of DIMPY—are unaffected by full deuteration.

Cm/T needed to determine RW is obtained from the
data at 6T, 7T, and 8.9T at temperatures below 0.75K,
excluding the region affected by the peak. At 5T and 8T,
Cm/T is taken from published data for a 67% deuterated
sample [13]. For consistency, we use the susceptibility
data taken at 300mK rather than 45mK, although the
two are nearly identical. On assumption that g=2.2 in
Eq. 1, RW determined from the susceptibility and specific
heat is shown in Fig. 4 as a function of the normalized
magnetization m=M(NASgµB)

−1. It takes on values
close to 4, increasing with increasing m.

To examine whether this result validates Eq. 2, we have
employed the DMRG method to calculate the TLL pa-
rameter K for x=2.0 [25]. The result, shown in Fig.
4 as RW by assuming Eq. 2, is in good agreement with
an earlier calculation [26]. Starting from 1 at m = 0, K
deviates upward from this universal free-fermion value —
characteristic behavior of a strong-leg ladder [26] as op-
posed to a strong-rung ladder. RW from the experiment
on the other hand is not always larger than 4 as expected
from Eq. 2. A plausible explanation is that this quantity
is sensitive to the value of the g factor that enters Eq. 1.
In fact, g=2.04 suggested by saturation-magnetization
data [14] —instead of g=2.2 chosen here on the basis of
the comparison of the magnetization data with the QMC
simulations— will raise RW by about 16%, bringing it to
closer agreement with 4K from the DMRG calculations.
Taking this into account, we conclude that within the
combined uncertainties of experiment and calculations,
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FIG. 4. (Color online). Dependence of the Wilson ratio RW of
DIMPY on the normalized magnetization m. Open symbols
are experimental data, assuming g=2.2 in Eq. 1; specific-
heat data from Fig. 3(a) have been used for circles, and those
from Ref. [13] for triangles. The error bars represent only
the combined uncertainties of the magnetization and heat ca-
pacity measurements; the uncertainty of the g factor has not
been included. Small filled circles are the TLL parameter K
for x=2.0, computed by the DMRG method and displayed
as RW by assuming Eq. 2. The line is a guide to the eye.

the result strongly supports Eq. 2, the equivalence be-
tween RW and K.

To summarize, our magnetization measurements fur-
ther confirm that DIMPY is an ideal 1D system whose
gapless phase above Hc is a Tomonaga-Luttinger liquid
(TLL) at low temperatures. The magnetization in this
phase exhibits a minimum at Tm, whose dependence on
magnetic field is in good agreement with quantum Monte
Carlo simulations. The maximum in the low tempera-
ture susceptibility near Hc is consistent with the square-
root singularity expected for gapped 1D antiferromagnets
at zero temperature. The successful determination of
the Wilson ratio, in conjunction with the density-matrix
renormalization-group calculations of the TLL parame-
terK, makes DIMPY the first laboratory 1D system that
lends support to the relation RW = 4K.
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