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We study the stochastic nature of switching current in hysteretic current-voltage characteristics
of superconductor-graphene-superconductor (SGS) junctions. We find that the dispersion of the
switching current distribution scales with temperature as σI ∝ TαG with αG as low as 1/3. This
observation is in sharp contrast with the known Josephson junction behavior where σI ∝ TαJ with
αJ = 2/3. We propose an explanation using a generalized version of Kurkijärvi’s theory for the
flux stability in rf-SQUID and attribute this anomalous effect to the temperature dependence of the
critical current which persists down to low temperatures.

PACS numbers: 74.45.+c, 72.80.Vp, 74.40.-n, 74.50.+r

Since the extraction of single-layer graphene [1, 2]
much effort has concentrated on its study due to the
promising potential in applications. The knowledge of
graphene properties and expertise in making high qual-
ity devices have grown substantially [3–5]. Neverthe-
less, the transport in graphene subject to nonequilib-
rium conditions and in the proximity to a superconduc-
tor, an important ingredient in the majority of applica-
tions, is far from being fully understood. Unlike metal-
superconductor interfaces reflection from a graphene-
superconductor boundary is governed by the specular
Andreev processes [6]. This peculiar effect combined with
the unique band structure of graphene makes proximity
effect in graphene a particularly interesting subject to
study.

Recent experiments on the superconductor-graphene-
superconductor (SGS) devices have revealed many inter-
esting features caused by the proximity effect [7]. These
include an observation of supercurrent and subsequent
measurement of the current-phase relation, signatures
of multiple Andreev reflection in the differential con-
ductance, and Shapiro steps under microwave irradia-
tion, see Refs. [8–12]. Recent measurements have also
revealed the residual resistance of SGS junctions for cur-
rents below critical which was attributed to the phase
diffusion phenomenon [13] followed by the crossover to
macroscopic quantum tunneling regime at low tempera-
tures [14]. Here we report first systematic study of ther-
mally activated dynamics of phase slips in SGS junctions
through the measurement of the switching current distri-
bution.

Measurement of the decay statistics of metastable
states is a powerful tool for revealing the intrinsic ther-
mal and quantum fluctuations. In the Josephson junc-
tions (JJ) a metastable dissipationless (superconducting)
state decays into dissipative (phase slippage) state when
the bias current I reaches a critical value called switching
current ISW , which is stochastic. Analysis of the distri-

bution of the switching current was employed to reveal
macroscopic quantum tunneling in JJs [15], supercon-
ducting nanowires [16], small underdamped JJs [17] and
intrinsic JJs in high-Tc compounds [18]. Experimentally
observed temperature dependence of the switching cur-
rent dispersion σI always follows a power law σI ∝ T 2/3,
if the switching is induced by a single thermally acti-
vated phase slip [19]. However at sufficiently low tem-
peratures the temperature dependence of σI saturates,
which is usually attributed to the macroscopic quantum
tunneling [15].

Study of switching current distribution in conventional
SNS junctions, where N is normal metal, is obstructed by
the fact that such junctions are usually overdamped. As a
result their I-V characteristics are smooth and the notion
of the switching current is not applicable. Here we report
a study of moderately underdamped SGS junctions with
the quality factor Q ' 4 for the entire span of gate volt-
ages. Our main finding is the anomalous temperature
dependence of the switching current dispersion σI ∝ TαG

in SGS devices with 0.3 . αG . 0.5, which persists for
a wide range of gate-induced doping and is significantly
smaller than the usual αJ = 2/3. In general, any power
law different from 2/3 is associated with the possibility
of quantum phase slips. In our graphene-based proximity
junctions, although the power law notably deviates from
2/3, we argue that thermally activated phase slips are the
major contributor. We interpret an anomalous dispersion
of σI by using a generalized Kurkijärvi model [20]. Our
conclusion is that the slowed temperature scaling of σI
in SGS junction is due to the substantial temperature
dependence of the critical current, which persists down
to low temperatures in SGS systems.

Graphene flakes are deposited on 280 nm thick SiO2

surface using mechanical exfoliation [1]. Raman spec-
troscopy is used to confirm the number of layers [21].
The electrodes, which have a fingered shape (Fig. 1a),
are patterned from a bilayer Pd/Pb (4nm/100nm), as
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FIG. 1: [Color online] a) SEM micrograph of sample 105.
Distance between the electrodes along the current (length of
the junction) is L = 265 nm. Width of the junction (distance
across the current) is W = 214 µm. For sample 111s, L =
280 nm and W = 9.9 µm. b) The hysteretic I-V curves of
SGS junction (sample 105) taken at various gate voltages.
The switching ISW and retrapping IRT currents are shown.

explained in the supplementary materials (SM). In order
to measure the switching current distribution, the ampli-
tude of the sinusoidal current bias is set somewhat higher
than the maximum switching current, and it is adjusted
when needed to keep the sweep speed roughly constant.
The number of switching events for each distribution was
either 5000 (for the sample 111s) or 10000 (for the sample
105). At low temperatures the I-V curves of the samples
exhibit a hysteretic behavior, Fig. 1b, which enables us
to study switching current statistics.

Our main focus is on the σI(T ) function. Figure 2
shows a switching histogram for sample 105 at (a) Dirac
point (Vg = −30V ) and (b) Vg = 50V . During the exper-
iment, some anomalously premature switching events are
recorded. These events, which significantly deviate from
the general population of the distribution, are very rare
and are believed to be unrelated to thermal fluctuations.
In order to exclude these anomalous jumps from the stan-
dard deviation calculation we first convert the raw data
to the switching rate Γ(I) according to the Kurkijarvi
method [19, 20]. The Kramers and Stewart-McCumber
theories combined (see below) lead to the expectation
that ln Γ ∝ (1−I/IC)3/2. In Figs. 2c and 2d we plot ln Γ
versus (1 − I/IC)3/2. The critical current IC is tuned
to make the graph as linear as possible. Then the lin-
ear part of the graph is fit with a straight line. Hollow
squares and circles are the measured data. Filled sym-
bols are those points which were used to find the best
linear fits. The best fit Γ(I) is then used to regener-
ate the distribution of ISW by inverting the Kurkijärvi
transformation. The results are shown as black curves
in Fig. 2a and Fig. 2b, for the experimental sweep rates
were 363µA/s and 2.7 mA/s. The red curves are com-
puted distributions for dI/dt = 100µA/s and 1.0 mA/s
correspondingly. The dispersion σI is then computed for
the same value of dI/dt for all temperatures.

Our main results are presented in Fig. 3. This fig-
ure shows standard deviation σI and critical current IC
versus temperature for various gate voltages. Figures 3a
and 3b are log-log plots of σI versus T . The best linear fit

provides αG, which is defined by the equation σI ∝ TαG .
The estimated error or uncertainty in the power values
is about 7%. Overall, the best fit αG’s are different from
the theoretically predicted JJ value αJ = 2/3 = 0.667.
Since numerous previous experiments on JJs established
the power close to 2/3 while our data indicate powers
roughly between 1/3 and 1/2, an understanding of such
discrepancy is desirable.

We interpret these observations based on the follow-
ing model. Since the pioneering theoretical work of
Kurkijärvi [20] and its experimental confirmation by Ful-
ton and Dunkleberger [19] kinetics of stochastic phase
slips in the JJs is described within Stewart-McCumber
model [23], which employs sinusoidal current-phase rela-
tion (CPR), IS(φ) = IC sin(φ), and represents the total
current as a sum of superconducting, normal and dis-
placement components. At the mesoscopic scale and, in
particular, in the context of graphene proximity circuits,
there are reasons to question the applicability of such
model given the possibility of a highly nontrivial struc-
ture of IS(φ) (see SM). This naturally raises a question
about the universality of the previous results with respect
to the form of the CPR. It is rather remarkable to realize
that the predictions of the theory [20] in fact extend be-

FIG. 2: [Color online] (a), (b) Switching current distributions
at Dirac point (Vg = −30V ) and Vg = 50V . The black curve
shows a theoretical fit to the experimental distribution with
an experimental speed: (a) 363µA/sec and (b) 2.7 mA/sec.
The red curve shows a calculated distribution with a new
sweeping speed: (a) 100µA/sec and (b) 1.0 mA/sec, using
the escape rate to the standardized sweep speed. (c)–(d)
Logarithm of the escape rate is shown as a function of the
scaled current. The raw data are shown as hollow circles and
squares. Filled squares and circles are used to calculate the
critical current and to fit the escape rate, which is shown as a
solid line. Anomalous premature jumps are visible as isolated
data on the left side of the graph.
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FIG. 3: [Color online] For sample 111s (VgD = −1 V) data
sets on panels (a), (c) and (e) correspond to gate voltages
Vg=50, 5, 3, 1, and -1 V, from top to bottom. For sample 105
(VgD = −30 V) data sets on panels (b), (d), (f) correspond
to Vg=50, 30, 10, -10, -30, and -50 V, from top to bottom.
(a)–(b) Standard deviation vs. temperature, in the log-log for-
mat. The best linear fits determine the power αG, which is
shown near each fit. (c)–(d) Critical current vs. temperature
for sample 105 and 111s at various gate voltages. Solid lines
are theoretical fits [25]. (e)–(f) Normalized standard devia-

tion, σI/I
1/3
C ∝ T α̃G , vs. temperature, in the log-log format.

The corresponding powers α̃G are indicated. The graphs are
shifted vertically for clarity. (g) Log-log plot of standard de-
viation vs. critical current at four different temperatures. (h)
Log-log plot of the scaled standard deviations vs. scaled crit-
ical current.

yond the limits of its original validity. We now proceed to
the generalization of the Kurkijärvi’s theory [20] devel-
oped for the statistics of thermally activated phase slips
in a flux-biased rf-SQUID to the case of a current-biased
weak link with an arbitrary CPR.

Within the Stewart-McCumber model the dynamics
of the phase φ is equivalent to the dynamics of a vis-

cous Brownian particle subject to the following external
potential:

G(φ) = F (φ)− ~Iφ/2e , (1)

which is the Gibbs potential. Here F (φ) =
(~/2e)

∫
dφIS(φ) is the free energy and I is the bias cur-

rent. We assume that IS = IS(φ) is a single-valued
smooth function. For I = 0, G(φ) is a periodic func-
tion of φ with alternating local maxima and minima. In
the absence of fluctuations the phase is trapped in one of
the minima as long as I < IC , which is a state with zero
voltage. In the resistive state when I > IC the phase in-
creases with time. In the presence of thermal fluctuations
even at I < IC the phase can escape its local minimum,
i.e. experience a phase slip, which drives the junction
into a phase-running resistive state. Such a process is
detected as a voltage jump (a switching event) on the
I-V curve. Upon decreasing I the junction may show
hysteretic behavior and the quality factor Q determines
the width of the hysteretic region. The activation rate
of a phase slip for a moderately underdamped (Q & 1)
to overdamped (Q � 1) junction is given by Kramers
theory [24] (hereafter kB = 1)

Γ = (1/2π)
(√

η2/4 + ω2 − η/2
)

exp(−∆G/T ) . (2)

The energy barrier ∆G is the spacing between two con-
secutive extrema: ∆G = G(φ+)−G(φ−). The prefactor
is determined by the curvature of the potential at mini-
mum, ω2 = C−1(2e/~)2∂2

φG and by the damping param-
eter η = 1/RNC, where RN and C are effective normal
resistance and capacitance of the junction. Notice that
Q = ωp/η where ωp =

√
2eIC/~C is plasma frequency.

To find the activation barrier ∆G(I) let us introduce
a critical phase φC defined through IC = IS(φC). In
the vicinity of φC one can use Taylor expansion IS(φ) =
IC − 1

2 |I
′′
C |(φ − φC)2 provided IS(φ) is a smooth func-

tion. F (φ) is obtained by integrating the supercurrent
over the phase, which gives F (φ) = FC + ~

2eIC(φ −
φC) − 1

3!
~
2e |I

′′
C |(φ − φC)3, where FC = F (φC) and

I ′′C = ∂2
φI(φ)|φC

. These equations determine the loca-
tions of the two consecutive extrema of the Gibbs poten-
tial: φ± − φC = ±

√
2(IC − I)/|I ′′C |. Using Eq. (1) one

finds

∆G(I) = GC(1− I/IC)3/2 , GC =
2
√

2~IC
3e

√
IC
|I ′′C |

. (3)

The curvature of the Gibbs potential at the extrema
points can be obtained in a similar way and is given by
ω2 = ω2

p

√
2(|I ′′C |/IC)(1− I/IC).

The knowledge of the decay rate (Eq. 2) allows one to
determine the probability p that a phase slip occurred by
the time t, which reads: p(t) = 1 − e−

∫ t
0

Γ(t′)dt′ , where
Γ = Γ(I(t)). Note that the probability of not having a
phase slip by the time t is 1 − p. For a constant bias
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current sweep ωi = I−1
C dI(t)/dt the probability p can be

evaluated analytically. Introducing reduced current vari-
able u = (GC/T )2/3(1−I/IC) and recalling the definition
of the quality factor one obtains the following expression:

p = 1− e−Xe
−u3/2

, X =
2Tω2

p/(3πωiηGC)

1 +
√

1 +Q2(T/GC)1/3u1/2
.

(4)
This result for the probability of a phase slip holds for a
moderate to high damping provided GC � T , the condi-
tion which is very well satisfied in most of our measure-
ments. In the limit of high damping when Q → 0 and
X → Tω2

p/(3πωiηGC) one recovers the result of [20].
To evaluate the dispersion of the switching current we

notice that the probability distribution P (x) of a vari-
able x is obtained from p(x) by the differentiation with
respect to x i.e. P (x) = −dp(x)/dx. Given the relation
between the bias current I and the reduced current u
this implies that the dispersions of these variables are re-
lated as σI = IC(T/GC)2/3σu. The crucial observation is
that dispersion σu considered as a function of X is con-
stant within a few percent while X is varied by several
orders of magnitude, so that for all practical purposes
σu is temperature independent [20]. Using Eq. (3) and
assuming that the temperature scalings of IC and I ′′C are
the same we obtain the following temperature scaling for
the dispersion of switching current:

σI(T ) ' (T/Φ0)2/3I
1/3
C (T ) , (5)

where Φ0 = h/2e is the flux quantum. Eq. (5) is the main
result of the calculation, which describes the tempera-
ture dependence of σI for any smooth CPR. According
to Eq. (5) the power of 2/3 in the temperature scaling for
σI is only expected if IC(T ) = const. In the SGS junc-
tions the critical current keeps increasing down to the
very low temperatures (Fig. 3c and 3d), due to the diver-
gence of the normal metal coherence length in graphene,
thus leading to the stronger proximity effect. The solid
lines in the figures are the fits to the SNS junction the-
ory [25]. The fitting parameters for the theoretical fits
are mean free path le=10-25 nm, which is similar to pre-
viously reported values [8–10], and the normal resistance
RN , which is of the same order of magnitude as the one
measured directly.

To further confirm our conclusions we plot σI/I
1/3
C

versus the temperature as suggested by Eq. (5). The
results are shown in Fig. 3e and 3f. Such critical-
current-normalized dispersion obeys the power law with
the power close to 0.6. For sample 105, the power rests
between 0.47 and 0.62; for sample 111s these values vary
between 0.55 and 0.63, which are close to 2/3, predicted
by the adopted Kurkijärvi model.

Another type of scaling which is suggested by Eq. (5)
and which can be accessed experimentally is the depen-
dence of the dispersion on the critical current at con-
stant temperature. Doping-dependent conductivity of

graphene provides a unique possibility to vary the criti-
cal current while keeping the temperature constant - an
experimental “knob” which is inaccessible for other types
of junctions.

In Figs. 3g and 3h we present results of such measure-
ments. We plot the ln(σI) versus ln(IC) for various tem-
peratures (Fig. 3g) and scaled ln(σI) versus scaled ln(IC)
(Fig. 3h). The average value of the power for sample 111s
is 0.34. The power of scaled data for sample 105 is 0.38,
which is shown as the best fit of the data. The resulting
powers are very close to the theoretically expected value
of 1/3.

In summary, we have studied the dispersion of the
switching current distribution in moderately under-
damped SGS junctions with clear hysteretic I-V char-
acteristics. A systematic measurements of both temper-
ature and critical current scaling (at constant T ) of the
dispersion is performed. The latter study, unavailable
in regular junctions, is made possible by a gate-voltage-
tuned conductivity of graphene. The temperature scaling
of the switching dispersion shows unusual power laws,
which is explained theoretically by taking into account
the temperature variation of the critical current. The
critical current scaling of the dispersion is explained theo-
retically by combined Stewart-McCumber and Kurkijärvi
models, and is applicable for the mesoscopic junctions
with arbitrary current-phase relationships.
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