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Abstract

We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC),

which supports Majorana fermions when subject to a Zeeman magnetic field and in proximity of a

superconductor. Using both analytical and numerical techniques we calculate the electronic spin

texture of the Majorana end states. We find that the spin polarization of these states depends

on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define

and calculate a local “Majorana polarization” and “Majorana density” and argue that they can be

used as order parameters to characterize the topological transition between the trivial system and

the system exhibiting Majorana bound modes. We find that the local “Majorana polarization” is

correlated to the transverse spin polarization, and we propose to test the presence of Majorana

fermions in a 1D system by a spin-polarized density of states measurement.
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Introduction–Majorana fermions have been attracting a lot of interest recently in the light

of the discovery of new materials with topological-insulator properties [1]. These atypical

fermionic particles have been predicted long time ago by E. Majorana as real solutions of

the Dirac equation [2]. Many condensed-matter systems such as Pfaffian states in frac-

tional quantum Hall (FQH) systems [3], chiral p-wave superconductors [4] (like strontium

ruthenate[5]), nodal superconductors under certain conditions [6], ultracold fermionic atoms

with laser-field-generated spin-orbit intearctions [7], the surface of 3D strong topological

insulators [8], as well as semiconductor/superconductor heterostructures [9] have been pro-

posed as platforms supporting Majorana fermions. Among the possible heterostructures,

one-dimensional (1D) systems with a strong spin-orbit coupling such as InAs and InSb

wires [10], subject to Zeeman magnetic field and in proximity of a superconductor (SC), can

exhibit Majorana fermions at their extremities [11, 12]. Various proposals have been made

to detect the Majorana states including interferometry [13], noise [14] and spectroscopy mea-

surements [15], etc. However, while a direct confirmation of the existence of the Majorana

states would constitute an important step for fields such as quantum computation [16], they

have not been detected experimentally so far.

Majorana modes for two dimensional spin-triplet topological superconductors have been

shown to exhibit an Ising-like spin density that may allow their detection via coupling to

a magnetic impurity[17]. Along similar lines, we propose a method to detect the Majorana

states in 1D topological semiconducting wire spectroscopically, using spin-polarized scanning

tunneling microscopy (STM). We generalize the model in Refs. 11, 12 to include both Rashba

and Dresselhaus spin-orbit interactions, and we show that the resulting Majorana bound

states exhibit a characteristic spin texture. In particular we find that the component of the

spin polarization in the transverse spin-plane (orthogonal to the direction of the magnetic

field) is non-zero solely in the topological phase, and its orientation is determined by the

relative weight of the SOC components. Moreover, we introduce a “Majorana pseudospin”

local order parameter and define two new local quantities denoted Majorana polarization and

Majorana density which quantify locally the Majorana character of a state. We show that

the transverse spin polarization is related to the Majorana polarization and we propose that

its measurement via spin-polarized STM will allow one to directly visualize the Majorana

fermionic states, and thus to test the topological character of a one-dimensional system.

Model– We consider a semiconducting wire oriented along the x-direction, and in prox-
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imity to a s-wave superconductor. Due to bulk inversion asymmetry, semiconducting wires

can exhibit along with the Rashba SO interaction analyzed in Refs. 12, 18, a Dresselhaus

SO interaction of the same order of magnitude[19] (∼ 0.1 eV Å). The Bogoliubov-de Gennes

(BdG) Hamiltonian for the infinite wire with both types of SOC can be written as

H =

∫

Ψ†HΨdx, Ψ† = (ψ†
↑, ψ

†
↓, ψ↓,−ψ↑),

H =

(

p2

2m
− µ+ αpσy + βpσx

)

τz + Vzσz −∆τx. (1)

σ’s and τ ’s are the usual Pauli matrices acting respectively in the spin and particle-hole

spaces. The chemical potential is denoted by µ, Vz is the Zeeman field, ∆ is the induced

superconducting pairing and α (β) characterize the strengths of the Rashba (Dresselhaus)

SOC components. The presence of the Dresselhaus term only trivially modifies the spectrum

for the translationally invariant system[12]

E2 = ξ2 + (α2 + β2)p2 + V 2
z +∆2

± 2(ξ2(α2 + β2)p2 + ξ2V 2
z +∆2V 2

z )
1/2, (2)

with ξ = p2/2m−µ. A careful analysis of this model shows that the conditions for the exis-

tence of the topological phase supporting Majorana fermions are unaffected by the Dressel-

haus SO interactions, V 2
z > ∆2 +µ2. It is interesting to note however that Majorana bound

states can exist even in the absence of the Rashba term, when Dresselhaus SO interactions

are present. Most importantly, the spin texture of the Majorana states is influenced by the

presence of the Dresselhaus term. To support this claim we present an analytical study of

the wavefunctions corresponding to the Majorana bound states, and we complement it by a

numerical study of the corresponding lattice model.

Analytical solution–It has been shown that Majorana bound states can arise at the in-

terface between trivial and topological regions of a one dimensional wire, for example by

considering a position dependent chemical potential [12, 20]. Thus, by choosing a chemical

potential µ1 for x ∈ [0, L], such that µ2
1 < V 2

z −∆2, and a µ2
0 > V 2

z −∆2 outside this interval,

one obtains a finite-size topological region inside a topologically trivial phase. The chemical

potentials are chosen such that the p = 0 gap, ∆ −
√

V 2 − µ2, is much smaller than the

superconducting gap ∆, which allows one to obtain analytical solutions to the problem by

linearizing the Hamiltonian in p. We assume that L ≫ 1, such that the problem can be
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solved independently at the two ends. Thus, ignoring the finite-size effects, the condition

to have zero-energy solutions bound at the two interfaces yields the allowed values for the

momenta,
√

α2 + β2k±j = ∆±
√

V 2
z − µ2

j , j ∈ {0, 1}. Consequently, the Majorana solution

at the left boundary ψ(x ∼ 0) can be written as































κu1(µ1)e
k−1 x, x > 0,

κ

2

[

(1 +
tanφ1

tanφ0

)u1(µ0)e
k−0 x

+ (1− tanφ1

tanφ0
)u2(µ0)e

k+0 x

]

, x < 0.

(3)

Similarly, the Majorana solution at the right boundary ψ(x ∼ L) is































κu3(µ1)e
−k−1 (x−L), x < L

κ

2

[

(1 +
tanφ1

tanφ0
)u3(µ0)e

−k−0 (x−L)

+ (1− tanφ1

tanφ0
)u4(µ0)e

−k+0 (x−L)

]

, x > L

(4)

with eiφj = 1/
√
2(
√

1 + µj/Vz + i
√

1− µj/Vz), and the Majorana eigenvectors are given by

u1(µj)
T = (cosφje

iϑ,− sinφj, sinφje
iϑ, cosφj),

u2(µj)
T = (cosφje

iϑ, sinφj,− sinφje
iϑ, cosφj),

u3(µj)
T = −(cos φje

iϑ, sinφj , sinφje
iϑ,− cosφj), (5)

u4(µj)
T = (− cosφje

iϑ, sinφj, sinφje
iϑ, cosφj).

Here eiϑ = (α + iβ)/
√

α2 + β2 allows one to define a two-dimensional spin-orbit vector in

the transverse plane, eϑ = (cosϑ, sin ϑ). Note that the obtained wavefunctions are indeed

Majorana fermions respecting the reality condition through the phase choice (ϑ+π)/2 for the

complex coefficient κ. The magnitude of κ is determined from the normalization conditions

of the wave functions and is of the order of (
√

V 2
z − µ2

1 −∆/
√

α2 + β2)1/2.

The electronic local spin polarization s(x) of a given four-component (two spin× elec-

tron/hole) Nambu state |ψ〉 can be calculated by evaluating the expectation values si(x) =

〈ψ|σi τ0+τz
2

|ψ〉 (the τ0 + τz insures that we only take into account the electronic, and not the

hole degrees of freedom). This prescription yields for the Majorana fermionic states at x = 0
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and x = L:

s(0) =
|κ|2
2

(− sin(2φ1) cosϑ, sin(2φ1) sinϑ, cos(2φ1))

s(L) =
|κ|2
2

(sin(2φ1) cosϑ,− sin(2φ1) sinϑ, cos(2φ1)). (6)

The above results show that the spin z-components are equal at the ends of the wire, while

the transverse spin polarization is equal in magnitude and opposite. Its direction is fixed

solely by the relative weight of the Rashba and Dresselhaus SOC components, sy/sx = −β/α.
It would be interesting to see whether this results also holds in presence of interactions

[18, 21].

Definitions–A general wave function written in Nambu basis described in Eq. (1) as

(u↑, u↓, v↓, v↑) can be recast in a Majorana basis (γ1↑, γ2↑, γ1↓, γ2↓), where

(γ1δ, γ2δ) =
1√
2
(ψ†

δe
−iϕ/2 + ψδe

iϕ/2, i(ψ†
δe

−iϕ/2 − ψδe
iϕ/2)), (7)

and ϕ is a phase characterizing the particular choice of Majorana basis. We can focus simply

on the spin up part of the wave function and define the Majorana polarization P ↑
M as the

difference between the probability to have a γ1↑ Majorana and the probability to have a γ2↑

Majorana, P ↑
M = Pγ1↑ − Pγ2↑. Note that Pγ1/2 but not PM , have been also introduced in

Ref. 18. For the generalized (ϕ not fixed) Majorana basis, it reads P ↑
M = −2Re[u↑v

∗
↑e

−iϕ].

The phase ϕ defines a “Majorana polarization axis” such that P ↑
M can be interpreted as a

vector (we can denote this vector as “Majorana pseudopsin”). As such it is decomposed on

the axis defined by ϕ into P ↑
Mx

(ϕ = 0) = −2Re[u↑v
∗
↑] and P

↑
My

(ϕ = π/2) = −2Im[u↑v
∗
↑ ].

The same procedure can be repeated for the spin down component. This leads to the

definition of the full Majorana polarization, PMi
= P ↑

Mi
+ P ↓

Mi
with i ∈ {x, y}. We should

note that the absolute value of the polarization vector PM =
√

P 2
Mx

+ P 2
My

, which we denote

Majorana density, is not dependent on the choice of (x,y) axes in the Majorana space. For

further reference the Majorana polarization and density are

PMx = 2Re[u↓v
∗
↓ − u↑v

∗
↑], PMy = 2Im[u↓v

∗
↓ − u↑v

∗
↑],

PM = 2|u↓v∗↓ − u↑v
∗
↑|. (8)

To emphasize the utility of such definitions the following properties should be noted.

For a wave function containing only electronic (or hole) degrees of freedom, the Majorana
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polarization is always zero. It equally vanishes for a conventional s-wave superconductor

where the wave function has the symmetry u(↓,↑) = v∗(↑,↓). A non-zero value for the Majorana

density is a necessary, but not sufficient condition to have Majorana fermions, and identifies

the low energy regime in which the model yields an effective p-wave type superconductivity.

At zero energy this quantity is maximal and predicts Majorana bound states at the edges.

Inspecting the Majorana polarization of these states allows one to unambiguously identify

that the two Majorana fermions are of different type. The most important property is that

such definitions allow one to explore locally (on-site in the discretized system) the structure

of the wave function, and its Majorana character.

For the above analytical solutions, the Majorana polarization vectors PM = (PMx , PMy)

yield

PM(0) = −PM(L) = −|κ|2(cosϑ, sin ϑ cos(2φ1)) (9)

The Majorana polarization vectors are opposite for the two Majorana wave functions at the

two ends. Besides, one can identify a relation between the spin polarization vector and the

Majorana polarization. When µ, ∆, Vz are fixed, PMx is proportional to sx, while PMy is

proportional to sy. Thus, when only Rashba/Dresselhaus SOC is present, the total trans-

verse spin polarization is proportional to the Majorana polarization, with a proportionality

constant which depends on the chemical potential potential and the applied Zeeman field.

When both components of the SOC are present, the Majorana polarization and the trans-

verse spin polarization vectors are no longer collinear but the correlations between these two

quantities are still qualitatively preserved.

Numerical model–For the numerical study, we consider a tight-binding formulation of

BdG Hamiltonian in Eq. (1)

H =
∑

j

Ψ†
j[(µ− t)τz + Vzσz −∆τx]Ψj

− 1

2

[

Ψ†
j(t+ iασy + iβσx)τzΨj+1 + h.c.

]

(10)

with the Nambu basis Ψ†
j = (c†j↑, c

†
j↓, cj↓,−cj↑). The sum is performed over N = 100 sites in

the system. We work in units of t = 1 and we consider the lattice constant l = 1 and ~ = 1.

Numerical simulations are done for typical values of the parameters Vz = 0.4,∆ = 0.3, µ = 0.

By exact diagonalization we have access to the local density of states, and the local spin-

polarized density of states along the x, y, and z directions. For example the local (site n)
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electronic i-spin polarization density is given by

ρσi,n =
4N
∑

j=1

δ(ω − Ej)〈Ψ(j)
n |σi

τ0 + τz
2

|Ψ(j)
n 〉 (11)

where Ej is the j
th eigenvalue of H and |Ψ(j)

n 〉 is the site n component of the jth eigenvector,

|Ψ(j)
n 〉 = (u

(j)
n↑ , u

(j)
n↓ , v

(j)
n↓ , v

(j)
n↑ ). We can thus use the definitions in Eq. (8) to calculate the local

Majorana polarization and density. For example, the local (n site) Majorana x-polarization

can be written as

PMx,n =
4N
∑

j=1

δ(ω − Ej)2Re[u
(j)
n↓v

∗(j)
n↓ − u

(j)
n↑v

∗(j)
n↑ ]. (12)

Numerically, we implement the δ functions as very thin Gaussians of width ≈ 0.0001~vF/l.

Numerical results–As expected, the exact diagonalization of H recovers the Majorana

bound states at the ends of the wire. In Fig. (1) we present the x and z components of

the spin polarization, as well as the Majorana polarization when the only considered SOC

is Rashba. The symmetrical situation, with only the Dresselhaus component of the SOC

present, is analyzed in the Supplementary Material (SM). We can see that the zero-energy

Majorana wavefunctions are extended over a small number of edge sites, while exhibiting

strongly damped spatial oscillations. The transverse electronic spin polarization is opposite

at the two ends of the wire; when only the Rashba term is present only the x-component of

the transverse spin is non-zero. The z-spin polarization is the same at the two ends of the

wire. While Eq. (6) predicts that the z-polarization vanishes for µ1 = 0, this is not the case

in the numerical calculation. This can be understood by the presence of an effective µ due

to the neglected kinetic term, which to leading order, contributes to 〈p2〉 ≈ O((∆ − Vz)
2),

which creates a negative effective potential as in the numerical results. Moreover, this

effective chemical potential is responsible for the spatial (quickly damped) oscillations of the

spin polarization observed numerically. Allthough these oscillations are not captured by the

continuum limit calculations, one can however check that the ratio sy,i/sx,i depends only on

the spin-orbit couplings in agreement with Eq. (6).

The numerical results for the Majorana polarization presented in Fig. (1) also follow

closely Eq. (9). Thus, the values of the Majorana polarization are always opposite at the

two ends of the wire, and only PMx is non-zero when only the Rashba component is present.

Also, as expected, PMx is proportional in this case to the x-spin polarization. Moreover,

while we do not present this here in detail, when both the Rashba and Dresselhaus SOC
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components are present, the peculiar dependence of the Majorana polarization in Eq. (9) on

the cos(2φ1) term indicates that the Majorana polarization vector should exhibit a spatial

precession in Majorana space; we have verified numerically that this is indeed the case.

We examine if Majorana polarization is a good order parameter to characterize the topo-

logical transition. This is done by varying one of the parameters (∆, Vz, µ) to drive the

system in a trivial phase. In Fig. (2), we vary Vz, and indeed we see that the system

becomes trivially gapped (no Majorana bound states) for Vz ≤ ∆. The inset describes the

dependence of the half-wire integral of the Majorana polarization for one of the lowest-energy

states as a function of Vz (an integral of 0.5 is equivalent to a “full” Majorana state). The

Majorana polarization decreases smoothly to zero below the critical value of Vz. The same

phenomenon can be observed in the second panel, where we plot the spatial distribution of

the Majorana polarization as a function of Vz. We have noted that the transition becomes

sharper when increasing the size of the system. The same qualitative features are obtained

when ∆ and µ are varied across the topological transition (the dependence on µ is presented

in SM). This shows that the Majorana polarization (and density) is a good local order pa-

rameter for the topological transition at V 2
z = ∆2 + µ2. This suggests that the Majorana

polarization can be used to investigate disordered wires[22], and indeed, as shown in SM, in

the presence of disorder it exhibits interesting features such as a weak polarization of the

low energy bulk states[23]. Moreover, the spin and Majorana polarization exhibit similar

spatial structure, even in the presence of disorder.

Conclusion–To summarize, we have found that the Majorana end states are oppositely

spin-polarized in the transverse spin-plane, and the direction of polarization depends on the

relative weight of the Rashba and Dresselhaus SOC in the wire. Moreover, we have proposed

a new wave-function-based measure of the Majorana character of a system, which we denote

Majorana polarization. We have seen that this quantity is related to the electronic spin

polarization and we have proposed to test the Majorana character of a 1D system using

spin-polarized STM measurements. While the density of states measurements can only

give information about the existence of a localized state at a given energy, without telling

anything about its Majorana character, such a spin-polarized measurement can make the

difference between a Majorana excitation or a non-topological localized state.
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Figures

FIG. 1: The spin polarization along the z and x directions, and the Majorana polarization PMx ,

as a function of energy and position, ∆ = 0.3, Vz = 0.4, α = 0.2, β = 0 and µ = 0.

FIG. 2: First panel: lowest-energy eigenvalues and the half-wire integral of the Majorana polariza-

tion (inset) as a function of Vz. Second panel: Majorana polarization of the lowest-energy state as

a function of position and Vz. Parameters: ∆ = 0.3, µ = 0, β = 0, and α = 0.2
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