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Chirality waves in two-dimensional magnets
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We theoretically show that moderate interaction between electrons confined to move in a plane
and localized magnetic moments leads to formation of a noncoplanar magnetic state. The state is
similar to the skyrmion crystal recently observed in cubic systems with the Dzyaloshinskii-Moriya
interaction; however, it does not require spin-orbit interaction. The non-coplanar magnetism is
accompanied by the ground-state electrical and spin currents, generated via the real-space Berry
phase mechanism. We examine the stability of the state with respect to lattice discreteness effects
and the magnitude of magnetic exchange interaction. The state can be realized in a number of
transition metal and magnetic semiconductor systems.

PACS numbers:

Magnetism is a cooperative phenomenon where spins of
magnetic ions spontaneously orient relative to each other
below certain ordering temperature [1, 2]. In principle,
arbitrarily complex magnetic orderings are possible; how-
ever, the magnetic states encountered in nature tend to
be simple, the most common being ferromagnetism (one
atom in magnetic unit cell, Fig. 1a) and antiferromag-
netism (two distinct atoms in magnetic unit cell, Fig. 1b).
More complex orders [3–6], such as noncollinear spirals
(Fig. 1d) and various noncoplanar orders (e.g., Fig. 1e)
are less common, typically arising from the interplay of
magnetic exchange interactions, spin-orbit (SO) coupling
[5], frustrated lattice structure [3], and magnetic field [6].

Noncoplanar magnetism has a unique effect on elec-
tronic transport through coherently influencing the
quantum-mechanical phase of electrons [7]. The phase
accumulates when an electron moves through the mag-
netic texture and adjusts its spin according to the lo-
cal magnetic environment. The resulting Berry phase is
equal to half of the solid angle subtended by electron spin
in the process of its evolution around a closed trajectory
(Fig. 1c). This is similar to the Aharonov-Bohm phase
induced by the electromagnetic vector potential which
couples to electron charge. If the magnetic texture varies
significantly on the scale of the material unit cell, the
equivalent magnetic field strength can be gigantic, ex-
ceeding 104 Tesla. Consequently, in non-coplanar mag-
nets one may find such exotic magneto-transport phe-
nomena as the intrinsic anomalous Hall effect [8], Hall
effect in the absence of net magnetization or magnetic
field [9], or even quantum anomalous Hall effect [10, 11].

In the absence of SO coupling or magnetic field, the
non-coplanar states have been believed to be very rare
[12, 13]. Recently, however, several examples have been
found that show energetic preference for non-coplanar
magnetic states [11, 14–17] in one of the simplest mod-
els of magnetism – the isotropic Kondo lattice model –
even in the absence of SO interaction. These noncopla-
nar states were found for particular lattice structures and
electron densities, which leaves an open question: How
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FIG. 1: Types of magnetic ordering. Collinear magnetic
states: (a) ferromagnet and (b) antiferromagnet. (d) Non-
collinear (but coplanar) magnetic spiral state. (e) Example
of non-coplanar magnetic state, from Ref. [11]. (c) Solid
angle Ω subtended by three local moments forming an ele-
mentary plaquette of a triangular lattice induces a quantum
Berry phase ±Ω/2 for electrons circling the plaquette, locally
aligned/antialigned with the texture.

common are the non-coplanar magnetic states? Here, we
show that non-coplanar magnetic states occur in the low-
density regime of 2D Kondo lattice models without fine
tuning. Our numerical results suggest that in the weak-
to-moderate coupling regime, the lowest energy state is
a “skyrmion crystal” [18], with the spatial period deter-
mined by the Fermi wavelength, λF ∼ 1/qF . The texture
S(r) can be characterized by the scalar spin chirality den-
sity, κ = S·[∂xS×∂yS], which measures the density of the
Berry phase (“Berry curvature”), and hence is related to
the effective orbital magnetic field acting on electrons.
We find that κ is spatially modulated, leading to persis-
tent bulk electrical and spin currents within the ground
state.
The starting point of our analysis is the continuum

limit of the Kondo lattice model, which describes itiner-
ant electrons interacting with localized moments,

H = −Ψ† ~
2∂2r
2m

Ψ− JS(r) ·Ψ†
σΨ ≡ Ψ†ĤΨ. (1)

Here Ψ = [ψ↑(r), ψ↓(r)]
T is the itinerant electron field op-

erator, m is the electron mass, σ = (σx, σy, σz) is vector
of the Pauli matrices and S(r) is the spin of the mag-
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FIG. 2: Instability of coplanar spiral state. (a,b) Free
energy of the spiral state S(r) = (sinKy, 0, cosKy) with
the ordering vector K for the Kondo coupling values
J/µ = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99 (arrows in-
dicate the direction of increasing J/µ). (a) Exact degen-

eracy of all spiral states with K < 2qF
√

1− J/µ. (b)
Lifting of the degeneracy in favor of K 6= 0 states due
to non-parabolicity of the electron band. Here, the quar-
tic terms in the dispersion have been introduced to repli-
cate the effect of the finite electron bandwidth, µ/t = 0.24,
with t the nearest neighbor hopping on a square lattice.
(c,d) Energy of the non-coplanar variational ansatz S̃(r) =
(sinKy cosQx, sinKy sinQx, cosKy). (c) Semi-analytical re-
sult of the small-Q expansion for the scaled energy difference
2π[F (K,Q) − FFM ]/(µQ2), obtained in the continuum limit
(J/µ increases from right to left curves as before). The dif-
ference becomes negative in some range of values K0 < K <
2qF

√

1− J/µ, indicating energetic preference for states with
Q 6= 0. (d) Free energy of the same ansatz for arbitrary val-
ues of Q obtained by direct numerical diagonalization of the
Hamiltonian with J/µ = 0.67.

netic atom located at r. The local magnetic moments
may originate from the electrons partially occupying d-
or f -core levels, whose spins are aligned by the ferromag-
netic Hund’s interaction. When their combined angular
momentum is large, the behavior of S(r) becomes nearly
classical, i.e., slow compared to itinerant electrons. From
the stand point of itinerant electrons the problem then
becomes tractable, since the Hamiltonian is quadratic in
electron fields and therefore can be exactly numerically
diagonalized for an arbitrary static configuration of the
classical moments S(r). The sign of the Kondo coupling
J does not matter in the case of classical local moments,
so we take J > 0.
The simplest approach to look for the ordered states

in the Kondo lattice model is by integrating out the elec-
tronic degrees of freedom perturbatively in J . In the low-
est (2nd) order in J , the result is the classical Heisenberg
Hamiltonian [19],

HRKKY = −J2
∑

i,j
χ(ri − rj)Si · Sj , (2)

that describes a system of local moments coupled by
pair-wise interactions. The spatial dependence of the
interaction is determined by the non-interacting elec-
tron spin susceptibility χ(r). Due to translational in-
variance, the ground state of this approximate model
can be easily found by transforming to the Fourier space
[20], HRKKY = −J2

∑

q
χ(q)S−q · Sq. From the fixed

length (classical) constraint, |Si| = 1, it follows that
∑

q
S−q · Sq = N , where N is the number of magnetic

atoms in the system. Therefore, the energy HRKKY is
minimized by, e.g., a simple spiral state with the wave
vector q0 that maximizes the non-interacting electron
spin susceptibility χ(q). The momentum dependence of
the susceptibility is determined by the itinerant electron
band structure. In particular, in one-dimensional (1D)
systems susceptibility diverges at twice the Fermi mo-
mentum, and hence q0 = 2qF ; in 2D continuum (low
electron density) limit it is flat up to 2qF , which makes all
states with q < 2qF energetically equivalent; in 3D con-
tinuum q0 = 0, which corresponds to ferromagnetism. A
distortion of the Fermi surface (and in particular “nest-
ing”) due to lattice discreteness effects can enhance sus-
ceptibility at a non-trivial q0, even in 3D. The main lim-
itation of the approach based on the quadratic Hamilto-
nian HRKKY is that it does not energetically discrimi-
nate between the single-q0 coplanar or multiple-q0 non-
coplanar orderings, as long as the constraint |Si| = 1 is
satisfied [21]. Hence the simple description provided by
HRKKY , while useful in determining the optimal order-
ing vectors in the weak-coupling regime, is inadequate
to answer the main question of this Letter: When does
the Kondo lattice model support non-coplanar magnetic
states?
To address this question we need to more accurately

compare the energy of non-coplanar magnetic states with
the simpler candidates for the ground state ordering in
the Kondo lattice model: the ferromagnetic and the
coplanar spiral states. We will focus on the low-density
2D systems because they are expected to be particularly
prone to complex orderings, due to the massive degener-
acy within the J2-order description (2). In the ferromag-
netic state, the free energy density at zero temperature
can be analytically evaluated as FFM = F0(1 + J2/µ2)
when J < µ and FFM = 1

2
F0(1 + J/µ)2 when J > µ,

where F0 = −(m/2π~2)µ2 is the energy of the non-
interacting electron gas with effective mass m and chem-
ical potential µ = ~

2q2F /2m. The stability of the fer-
romagnetic state for J > µ follows from the gradient
expansion of the free energy,

F − FFM = Θ(J2 − µ2)
J2 − µ2

8πJ

∫

dr

V
|∇S|2, (3)

where Θ(x) is the Heaviside step function and V is the
volume of the system. For values of J < µ, ferromagnet
loses stiffness. Remarkably, in this regime, the ferromag-
netic state is exactly degenerate (to all orders in J) with
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all spiral states, S(r) = (sinKy, 0, cosKy),

FS=
∑

±

∫

dq

(2π~)2
[ε±(q)− µ]Θ(µ− ε±(q)), (4)

ε±(q) =
~
2q2

2m
+
~
2K2

8m
±

√

~4K2q2y
4m2

+J2, (5)

as long as K ≤ 2qF
√

1− J/µ, see Fig. 2a. This de-
generacy is lifted when deviations from parabolic disper-
sion are included. For instance, for low-density electrons
hopping between nearest neighbor sites on a square lat-
tice, there is an energetic preference towards a spiral with
K ≈ 2qF

√

1− J/µ, Fig. 2b.
To determine whether the simple spiral states are

unstable with respect to non-coplanar distortions, we
introduce a slow modulation in the texture with
the wave vector Q perpendicular to K, S̃(r) =
(sinKy cosQx, sinKy sinQx, cosKy). The free energy
correction due to finite Q can be obtained by local spin
rotation of the Hamiltonian (1) to

Ĥ ′ =
~
2q2x
2m

−
~
2∂2y
2m

+
~
2K2

8m
+

~
2Ki∂y
2m

σy − Jσz

+
~
2Q2

8m
−

~
2Qqx
2m

(σz cosKy − σx sinKy), (6)

and subsequent expansion to the second order in Q,
which yelds

F ′= FFM + [Q2µ/8π][1 + I(K)] +O(Q4) (7)

I(K)=

∫ ∞

−∞

dxdy

∫

C

dz
x2

∏

±

[

z − 2 K
qF

(

y ± K
2qF

)]

π2
∏

±

{

z
[

z−2 K
qF

(

y± K
2qF

)]

−J2

µ2

} . (8)

The integration over z is to be performed along the line
Re(z) = x2 + y2 − 1. The integrals over z and x can be
evaluated analytically, while the final integral over y is
computed numerically. The result is presented in Fig. 2c.
Notably, for small K, the Q2 correction is identically
zero. At some finite momentum K0 < 2qF

√

1− J/µ,
however, the correction becomes negative. This proves
unambiguously that any simple spiral (as well as ferro-
magnetic) state in the continuum limit of the Kondo lat-
tice model has higher energy than a more complex non-
coplanar magnetic state for J < µ. Direct numerical
evaluation of the free energy can also be performed for
arbitrary values of Q and K, by exact diagonalization of
the Hamiltonian (6), Fig. 2d. For J ≪ µ, the minimum
is reached by a noncoplanar state S̃(r) with Q ≈ K ≈ qF .
The energetic advantage scales as O(J4), which is natu-
rally outside the accuracy of the description provided by
HRKKY .
A distinctive feature of state S̃(r) is the harmonically

modulated scalar spin chirality, κ ∝ sin(Ky) (Fig. 3e),
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FIG. 3: (a-e) The optimal magnetic state S̃(r) =
(sinKy cosKx,− cosKy, sinKy sinKx) realized at small
Kondo coupling, J/µ ≪ 1. Panels (a-c) show the spatial de-
pendence of the three magnetization components. (d) Full 3D
magnetization pattern. (e) The in-plane magnetization has a
“vortex-antivortex” structure (vortex points are marked with
circles, antivortex points — with squares). The color of the
arrows (green/red) represents the direction (down/up) of the
Sz component of the local moments. The superimposed den-
sity plot in e represents scalar chirality, κ = S·[∂xS×∂yS]. (f)
1D cut showing the chirality density and the induced charge
current density in the lowest energy state, S̃(r), for J = 0.2
and µ = 0.5. (g,h) The two-dimensional periodic magnetiza-
tion patterns can be naturally mapped onto toroidal surface
representing the real space magnetic unit cell. A simple spiral
texture, (g), is unstable with respect to configuration (h) that

corresponds to the S̃(r) texture.

which plays a role analogous to a spatially varying mag-
netic field perpendicular to the plane of the sample. Due
to the effective spin-dependent Lorentz force acting on
electrons, there are both spin and charge Hall effects as-
sociated with the local value of κ in the absence of an
externally applied magnetic field [charge Hall effect ap-
pears due to the imbalance between electron spin popu-
lations aligned and anti-aligned with the local exchange
field JS(r)]. In the electron band structure, magnetic
ordering leads to opening of multiple energy gaps; how-
ever, overall the system remains metallic and hence there
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is no quantum Hall effect. Nevertheless, similar to the
quantum Hall systems where one obtains persistent edge
currents, here we find spontaneous ground state current
in the bulk, with the maxima of the current magnitude
occurring at the nodes of κ, Fig 3f.

We now discuss the possibility of other noncoplanar
states. In the limit of small J/µ and very low electron
density, there are stringent constraints on the kinds of
states that can be the ground state of the Hamiltonian
(1). In particular, any Fourier components Sq that fall
outside the circle q < 2kF , would incur energy cost of
order J2. For instance, this rules out the hexagonal
skyrmion crystals [18] in this regime, since for classical
spins it contains an infinite number of harmonics. On
the other hand, for the state S̃(r), all Fourier harmonics
Sq can be confined to the circle q < 2kF , making it de-
generate with spiral and ferromagnetic states in the J2

order, but energetically favored in the order J4. Thus,
in the limit J ≪ µ, Sq is a likely candidate for the abso-
lute ground state of the system. The highly symmetric
nature of S̃(r) can be appreciated by mapping it onto a
torus representing the real space magnetic unit cell. It
corresponds to the Gauss’ map, which associates a nor-
mal vector to every point of the torus, Fig. 3h. One can
easily see that the map is in the same topological sector
as the spiral (Fig. 3g) and the ferromagnetic states (triv-
ial map), as they can be smoothly distorted into each
other without changing the real space unit cell. (This is
in contrast to the map that corresponds to the hexagonal
skyrmion crystal. It has a wrapping number 1, i.e. the
unit sphere of S(r) is covered exactly once upon integra-
tion over the real space unit cell).

At intermediate values of J/µ, the higher-order contri-
butions to energy may become comparable to the second-
order (RKKY) terms and the simple perturbative argu-
ments can no longer be applied. In this regime, we spec-
ulate that a hexagonal skyrmion crystal may become fa-
vorable as it can open more easily a full gap in the elec-
tronic spectrum around the Fermi surface for moderate
values of J/µ, even though in the order J2 it loses to
S̃(r). Similarly, quasicrystalline orders that have even
higher order rotational symmetries, e.g. 8- or 10-fold,
can become competitive in the intermediate J/µ regime
since they can open the gap around the Fermi surface
even more effectively. Whether these possibilities are re-
alized in the model (1) is a challenging problem.

Finally, we comment on the effects of lattice discrete-
ness, which causes deviations from the pure parabolic
dispersion assumed in the model (1). In Fig. 2b we have
seen that the energy of the simple spiral state decreases
on a lattice. It is therefore important to analyze how
the range of stability of the noncoplanar phase is mod-
ified by this effect. By directly evaluating the energy
of the spiral vs. non-coplanar state on a square lattice
with only nearest neighbor hopping at finite densities we
have found that the region of stability of the noncoplanar

state behaves as κµ < J < µ with κ ≈ 0.4. The value
of κ will depend on the type of tight-binding model; the
better the dispersion fits the parabolic dispersion of free
electrons, the smaller the value of κ. The details, along
with the numerical results of the unconstrained energy
minimization on finite real-space magnetic unit cells, are
presented in the Supplemental material.

Even though our focus has been on the zero-
temperature behavior in 2D systems, we expect that the
results will remain qualitatively valid in quasi-2D sys-
tems up to finite temperatures. Consequently, one can
anticipate that non-coplanar magnetism with concomi-
tant exotic Hall behavior, may appear in a wide range
of materials and artificial structures, including magnetic
monolayers on metallic surfaces [22], layered magnetic
materials [23], dilute magnetic semiconductor films [24],
and transition metal oxide heterostructures. In particu-
lar, recent studies of the Hall conductivity in thin films
of Mn doped GaAs show highly unusual behavior, which
cannot be explained within the conventional mechanisms
of the anomalous Hall effect [24]. The carrier concentra-
tions and the exchange coupling strengths, controlled by
the Mn concentration, place this system in the interesting
weak-to-intermediate coupling regime considered in this
Letter, indicating possible relevance of our consideration
to this system.
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