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We theoretically investigate the interplay between charge ordering and magnetic states in quasi-
one-dimensional molecular conductors TMTTF2X, motivated by the observation of a complex vari-
ation of competing/coexisting phases. We show that the ferroelectric-type charge order increases
two-dimensional antiferromagnetic spin correlation, whereas in the one-dimensional regime two dif-
ferent spin-Peierls states are stabilized. By using first-principles band calculations for the estimation
for the transfer integrals and comparing our results with the experiments, we identify the controlling
parameters in the experimental phase diagram to be not only the inter-chain transfer integrals but
also the amplitude of the charge order.

PACS numbers: 71.10.Fd, 71.20.Rv, 71.30.+h, 75.30.Kz

Low-dimensional molecular conductors provide a fruitful stage to study strong electron correlations in the presence
of large quantum fluctuations and coupling to lattice degrees of freedom [1]. The observed phase transitions involving
spin, charge, and lattice degrees of freedom are summarized in the form of pressure (P )-temperature (T ) phase
diagrams for different families. It is common to stabilize a different ground state even for relatively small pressure
variations. Presumably, these changes are triggered by small variations in lattice constants for a given material while
maintaining the same geometry of constituent molecules at room T (isostructural) [2].A general goal is to identify
the parameters controlling the ground states and trends in the nature of the elementary excitations. An example
of interest is the TMTTF2X (TMTTF: tetramethyl-tetrathiafulvalene, X : monovalent anion) family of molecular
solids [3], in which the tuning of charge order, by way of applying pressure, appears to play a role controlling the
magnetic states [4]. Specifically, decreasing the charge order amplitude by use of applied pressure is associated with
the antiferromagnetic (AF) transition TN → 0, and clarifying the relevant physics for this behavior is of interest in
the field of quantum magnetism.
In the quasi-one dimensional family of TM2X (TM: TMTTF or tetramethyl-tetraselenafulvalene TMTSF), the key

parameter has been widely accepted as the dimensionality (D) tuned by the relative increase of inter-chain transfer
integrals by P [3, 5, 6]. Figure 1 shows the recently updated phase diagram [3, 4, 7, 8]. Amazingly, a wide variety
of phase transitions appear by applying P or replacement of X (chemical P ). The phases latest revealed are in the
left side where a ferroelectric-type charge ordering (FCO) transition was found [7, 9]; it has a strongly correlated
nature [10], leading to magnetic transitions at low T . Prior to discovery of the FCO phases, the P -D correspondence
was invoked to describe the phases and transitions appearing at higher P : transport experiments indicate that the
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FIG. 1: (Color Online) A schematic phase diagram for TM salts [4]. The ambient pressures for TMTTF2SbF6 and TMTTF2PF6

are shown. DM, FCO, AF, SP, SC represent dimer Mott, ferroelectric charge ordering, antiferromagnetic, spin-Peierls, and
superconducting states. The dashed line is a crossover while the solid lines are phase transitions. The inset shows the
arrangement of TM molecules in the conducting plane.
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correlation gap is reduced with P , interpreted as driven by the transverse hopping process [11], and the system shows
a dimensional crossover [3]. The low-T spin-Peierls (SP) state (SP1 in Fig. 1) is destabilized in favor of an AF state
(AF1) [12], which is consistent with the increase in the transverse spin exchange couplings [13, 14].
Difficulties come about when one attempts to apply the relation to the left side, the region with FCO. First, a

discrepancy is easily seen since another AF phase (AF2) appears at the lowest P and turns into the SP phase (SP2)
by applying P , opposite to the SP1 → AF1 variation; the AF2 and SP2 states both coexist with FCO. Another point
is that the FCO and AF2 transitions behave cooperatively, namely, their transition temperatures both develop at low
P [4, 15]. This is peculiar in the sense that, in general, charge ordering tends to decrease the effective spin exchange
couplings [10, 16], and therefore would diminish transitions subject to spin couplings; in fact, the SP2 phase shows
such behavior [7, 8] which is reproduced in theoretical works [17, 18].
In this Letter, we theoretically elucidate the origin for such variations which apparently do not fit to the conven-

tional practice. Starting by evaluation of transfer integrals using first principles band calculations (FPBC), we then
investigate the roles of electronic correlation and electron-lattice couplings on the basis of the effective quarter-filled
extended Hubbard model (EHM). We will show that the complex sequence of phases observed experimentally can be
reproduced naturally when we add the inter-site Coulomb interaction as another essential parameter, in addition to
the inter-chain transfer integrals.
The inclusion of the newly found phases in the low-P side of the phase diagram was proposed based on NMR

measurements [4, 8], and the continuous connection of phases has been shown by different experiments [19–22].First
we address this in terms of electronic structure. We calculate the electronic band dispersions for two (TMTTF)2X
members situated in the FCO region, X=PF6 (SP2 phase) and X=SbF6 (AF2 phase), within FPBC using the
computational code QMAS (Quantum MAterials Simulator) [23] based on the projector augmented-wave method [24]
with the generalized gradient approximation [25].
By tight binding fitting to the electron bands near the Fermi level we obtain the values of transfer integrals in the unit

of meV as {ta1, ta2, tb, tq1, tq2}={−155,−203, 26.2,−1.31,−3.29} for the former and {−149,−207, 16.4,−16.4,−9.73}
for the latter salt (notations are shown in the inset of Fig. 1). The absolute values of ta1 and ta2 are about 10 times
larger than the other transfer integrals: both salts form a quasi-one dimensional electronic structure along the a axis
with dimerization. A measure for the D effect is given by |tb/ta2| whose values are given as 0.129 for the PF6 salt
and 0.080 for the SbF6 salt. From this point, as far as the transfer integrals are concerned, the 2-D in the PF6 salt is
indeed more higher than that in the SbF6 salt. This is consistent with the semi-empirical extended Hückel calculations
as well as considerations based on their crystal structures [26].
Next we investigate the role of Coulomb repulsions on top of such electronic structure, by considering the quasi-one

dimensional EHM at quarter-filling in terms of holes. The Hamiltonian is given by

HEHM = −
∑

〈ij〉,σ

tij(c
†
iσcjσ +H.c.)

+ U
∑

i

ni↑ni↓ +
∑

〈ij〉

Vijninj , (1)

where tij is the transfer integral between the neighboring sites denoted by 〈ij〉, c†iσ (ciσ) is the creation (annihilation)

operator of a hole on the ith site with spin σ =↑ or ↓, and ni = ni↑ + ni↓ with niσ = c†iσciσ . U and Vij are the
on-site and the inter-site Coulomb interactions, respectively. From the results of FPBC, we hereafter set the transfer
integrals as ta1 = −0.8, ta2 = −1, tq1 = 0, tq2 = 0 [27] and choose the inter-chain transfer integral tb as a parameter,
as inferred from the results above. We choose the on-site Coulomb interaction to be a typical value for this class of
materials [10], as U = 4 (∼ 1 eV ) and impose a constraint on Vij as Va1 = Va2 = Vq1 = Vq2 = V and Vb = 0 to realize
the FCO pattern observed in experiments (see Fig. 3).
Numerical exact diagonalization on a 4 × 4 sites cluster under periodic boundary conditions is performed, where

we introduce inter-dimer/intra-dimer charge and spin structure factors given by C±(q) = N−1
d

∑
i,j〈n

±
i n

±
j 〉e

iq·(ri−rj)

and S±(q) = N−1
d

∑
i,j〈m

±
i m

±
j 〉e

iq·(ri−rj), respectively, where Nd is the total number of dimers and ri denotes
the center position of the ith dimer. Here, the inter-dimer/intra-dimer (+/−) correlations are detected by the
summation/difference in charge and spin densities within each dimer, n±

i = (n2i±n2i+1)/2 and m±
i = (m2i±m2i+1)/2

with mi = ni↑ − ni↓, respectively, where even (odd) number is labeled as the site for the left (right) side in a dimer.
Figure 2 shows C±(q) and S±(q) for tb = 0.1, at V = 0 (a) and V = 2 (b)[28]. At V = 0, there is no pronounced

peak in C±(q); the system is in the dimer-Mott (DM) insulating state, where the intra-chain dimerization together
with U lead to a Mott insulator [10]. The enhanced S+(π, qb) and featureless behavior in S−(q) indicate that the AF
correlation is developed between dimers, but only in the a-direction due to the 1-D. On the other hand, at V = 2,
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FIG. 2: (Color Online) Inter-dimer/intra-dimer charge and spin structure factors C±(q) and S±(q) at (a) V = 0 and (b) V = 2,
for U = 4 and tb = 0.1. (c) C−(0, 0) (background color) and S+(π, π) (contour) on the (tb, V ) plane: The two-dimensional AF
correlation is developed by both tb and V . (d) The leading spin-exchange process from the fourth-order perturbation in the
presence of FCO.

C−(q) has a clear peak at q = (0, 0), i.e., the FCO correlation, and S±(q) both have peaks at q = (π, π). This shows
that the development of FCO due to the inter-site Coulomb interaction induces the two-dimensional AF correlation
between the charge rich sites. Note that this happens in spite of the fact that the transfer integrals are unchanged
from Fig. 2 (a).
The emergence of 2-D AF correlation is balanced by the degree of FCO and the inter-chain transfer integral, as

seen from Fig. 2 (c), where C−(0, 0) and S+(π, π) are plotted on the (tb, V ) plane. C−(0, 0) sharply develops with
increasing V while S+(π, π) increases with increasing tb, expected from the inter-chain spin exchange. The noticeable
point is that the S+(π, π) peak is rapidly developed at large V when FCO is stabilized: the FCO state assists in
stabilizing the AF state. As a result, the one-dimensional regime in the spin sector is limited to the region where both
parameters tb and V are small.
The origin of the magnetic properties seen in Fig. 2 (c) can be understood by a simplified strong-coupling analysis

estimating the leading terms of the spin-exchange couplings by perturbation calculations with respect to the transfer
integrals. In the DM state, the spin-exchange couplings between dimers along a-axis is simply given by Ja = −t2a1/Ud,
while that along b-axis is given by Jb = −4t2b/Ud, where Ud is the effective on-site Coulomb interaction for the dimer
units [10]. Thus, the 2-D is enlarged toward |ta1| ∼ 2tb, namely, tb ∼ 0.4; in fact S+(π, π) shows a maximum around
this value for V = 0 (large tb region is not shown). On the other hand, in the basis of the FCO state in the limit
of large U and V , the charge localizes on every other site along the intra-chain a-axis, and on the nearest-neighbor
sites along the b-axis (see Fig. 2 (d)); then the spin exchange coupling between these sites for the former is given by
Ja ∼ −4t2a1t

2
a2/(9UV 2) from the forth-order perturbation whose spin-exchange process is shown in Fig. 2 (d) [29],

while for the latter Jb ∼ −4t2b/U from the second-order perturbation. Although tb is small compared to ta1 and ta2,
Jb can become the same order compared to Ja due to the effect of V . Then the 2-D in the magnetic state increases
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FIG. 3: (Color Online) (a) V -dependence of the order parameters in the charge densities and lattice distortions for U = 4,
tb = 0.1, K1 = 0.8, and K2 = 1. (b) Ground state phase diagram on (tb, V ) plane for U = 4, K1 = 0.8, and K2 = 1. “2DAF”
stands for the enhanced two-dimensional AF correlation while the other abbreviations (see text) represents ordered phases.
The proposed trajectory for the pressure axis in the phase diagram Fig. 1 is shown by the arrow.

and the AF state is induced.
It is known that electron-lattice couplings invoke the SP transition and various types of phase transitions with

lattice modulations within one-dimensional models [17, 18, 30]. Here we investigate such effects in our quasi-one
dimensional system by considering both Peierls- and Holstein-type electron-lattice interactions coupled to the EHM,
given in addition to eq. (1) as

HP = −
∑

〈ij〉a,σ

tijuij(c
†
iσcjσ +H.c.) +

K1

2

∑

〈ij〉a

u2
ij , (2)

HH = −
∑

i

vini +
K2

2

∑

i

v2i , (3)

where uij and vi are the renormalized lattice distortions treated here as classical values and the corresponding spring
constants are given by K1 and K2, respectively. The Peierls distortions are treated along the a axis (written as 〈ij〉a
pairs in eq. (2)), namely only intra-chain couplings are considered, to account for the one-dimensional quantum effects.
Using the Hellman-Feynman theorem under the constraint

∑
〈ij〉a

uij = 0, we can obtain uij and vi (= 〈ni〉/K2) self-

consistently using the ground state expectation values for bond operators and charge densities [17, 18, 30]. In the
following we show results for an 8× 2 site-cluster [31] at K1 = 0.8 and K2 = 1, under the anti-periodic and periodic
boundary conditions along a- and b-axis, respectively. From the four-lattice periodicity modulations along the a axis,
we can define order parameters following Ref. [17] as, for the FCO state: n

CO
, for the coexistence of FCO and SP

tetramerization (FCO+SP): {u
CO+SP

, n
CO+SP

} and for the SP state without FCO (DM+SP): {u
DM+SP

, n
DM+SP

} [32]
(see Fig. 3 (b) for schematic representations). Due to intrinsic dimerization (ta1, ta2), two-fold lattice distortion u

DM

always exists.
Figure 3 (a) shows the results for tb = 0.1 (same as Figs. 2 (a) and (b)), as a function of V . As V increases, first a
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phase transition occurs as DM+SP → FCO+SP due to the effect of V [17], and then to the FCO state without SP
tetramerization; the SP state becomes unstable by the development of the two-dimensional AF correlation controlled
by the FCO that we have seen above. The ground state phase diagram on the (tb, V ) plane is shown in Fig. 3 (b).
The two kinds of SP states are suppressed with increasing tb, due to the increase in the inter-chain spin exchange,
while, as we have seen in Fig. 3 (a), V also diminishes the SP states. We confirm that both S±(q) have sharp peaks
at q = (±π,±π) in FCO state, while only S+(q) has peaks at q = (±π,±π) in DM state: these tendencies are the
same for the case without electron-phonon couplings shown in Fig. 2.
Based on the above results, we finally discuss our results in relation with the complex variation of phases in the

phase diagram in Fig. 1. To establish a correspondence between tb in our calculation in Fig. 3 and our estimations
based on FPBC mentioned above, we need to divide the latter by two due to the 8 × 2 cluster having a “ladder”
geometry; then for the PF6 and SbF6 salts, this gives tb = 0.065 and tb = 0.040. By considering the experimental
ground states for the PF6 salt (FCO+SP) and the SbF6 salt (FCO+2DAF), we can deduce that they are positioned
as indicated in Fig. 3 (b), where the SbF6 salt has larger value of V . This is consistent with the fact that the SbF6

salt has larger transfer integrals along the diagonal q1 and q2 bonds, namely, larger overlap between the molecular
orbitals, which results in larger values of intersite Coulomb repulsions [33], Vq1 and Vq2, favoring the FCO pattern.
The smooth evolution of phases with applied P suggests that the system follows along the arrow in Fig. 3 (b).
Specifically, with applied P , transfer integrals reflecting the overlap between the molecular orbitals are more sensitive
compared to the inter-site Coulomb repulsions, which are approximately a function of inter-molecular distance [33].
Then, the variation of ground state with P is now given by FCO+2DAF (AF2) → FCO+SP (SP2) → DM+SP(SP1)
→ DM+2DAF (AF1) states, which agrees with the variation in Fig. 1. As for the case of chemical P , namely, with
the variation among different X other than PF6 and SbF6, our work suggests that a careful reconsideration for each
compound should be made how to allocate “ambient P” positions, where the anisotropic parameters sensitively reflect
the ground state; we leave them as a future problem. Our results indicate that the dimensional crossover in magnetic
states is controlled by not only tb but also V , inducing the FCO state is essential to understand the sequence of phase
transitions in TMTTF salts. The apparently confusing cooperative behavior in the FCO and AF2 states, is naturally
understood based on our scenario.
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