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Both the inherent intractability and complex beauty of turbulence reside in its large range of
physical and temporal scales. This range of scales is captured by the Reynolds number, which in
nature and in many engineering applications can be as large as 105-106. Here, we report turbulence
measurements over an unprecedented range of Reynolds numbers using a unique combination of a
high-pressure air facility and a new nano-scale anemometry probe. The results reveal previously
unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably
similar to the well known scaling behavior of the mean velocity distribution.

PACS numbers: 47.27.-i, 47.27.nb, 47.27.Jv, 47.60.-i

Most practical flows are turbulent. For example, the
flow in a river, over a large vehicle, or in the lower at-
mosphere, is almost always turbulent, and the turbulent
velocity field is often described as consisting of a large
number of eddying motions, an observation first recorded
by Leonardo da Vinci [1]. The eddies cause intense mix-
ing to take place, and therefore turbulent flows are very
effective in transporting momentum, energy, and mass.
What makes turbulence so challenging, and our predic-
tions so fickle, is that the eddies cover a very large range
of sizes. One measure of the flow complexity is given by
the magnitude of the Reynolds number Re+, which is the
ratio of the size of the largest eddies, set by the size of
the flow domain R (e.g. radius in pipe flow), to the size
of the smallest eddies η, set by the viscous dissipation
of energy, so that Re+ = R/η. In high Reynolds num-
ber turbulent flows, which include many flows of great
practical interest, such as the atmospheric surface layer
or the flow in large pipes, Re+ = O(105-106). Under
these conditions, direct computations of turbulence are
extremely challenging, and experiments become essential
to develop turbulence models and scaling rules to help
predict the behavior of turbulent flows.

We are particularly interested in the behavior of high
Reynolds number flows, where there is a large separa-
tion of scales between the largest and smallest eddies.
In fact, almost all theories of turbulence are only valid
in the high Reynolds number limit. Field experiments
are notoriously difficult, however, and to achieve large
Reynolds numbers in the laboratory we need to make ei-
ther R large, or η small, or do both, which is usually
difficult and expensive. McKeon et al. [2] and Morrison
et al. [3] used the Princeton Superpipe, in which pipe
flow turbulence can be studied at very high Reynolds
numbers by using compressed air at pressures, pa, up to
220 atm as the working fluid [4]. High pressure brings
the realm of high Reynolds number into a modest scale
laboratory, and it is relatively inexpensive to produce a
very high quality flow. Our current experimental setup is
shown in figure 1a and figure 1b. However, at the highest

Reynolds number possible in the Superpipe apparatus, η
can be as small as 0.3 µm [5], and to measure all aspects
of the turbulence we need to have instrumentation capa-
ble of resolving these small scales. Only then will we have
the capability to learn exactly how turbulence varies with
Reynolds number, which will provide the empirical basis
for theory and computation of turbulent flows in nature
and industry. The preferred instrument for turbulence
studies has always been the hot-wire anemometer, be-
cause it gives a continuous time signal and is thus able to
temporally resolve the turbulent motions. However, the
sensor must be small enough to avoid the phenomenon
of spatial filtering, where the energy contained in eddies
smaller than the sensor length is effectively filtered from
the signal.

It is difficult to make hot-wire sensors smaller in length
than about 0.25 mm, which is generally much larger than
η in high Reynolds number flow. Therefore, to resolve the
smallest scales in the Superpipe, a new solution needed
to be found. Our approach was to develop a Nano-Scale
Thermal Anemometry Probe (NSTAP) [6, 7], a free-
standing nanoscale Platinum wire with cross-section of
2 µm by 100 nm and active length, ℓ, as small as 30 µm,
suspended between two electrically conducting supports.
A sketch of a typical NSTAP, with 60 µm long wire, is
shown in figure 1c and a scanning electron microscope
image of a fabricated probe is shown in figure 1d.

We have now combined the Superpipe facility with the
NSTAP to investigate the scaling behavior of turbulence
at very high Reynolds numbers. In the traditional view,
the mean flow scaling in, for example, pipe flow, can be
divided into three distinct regions at asymptotically infi-
nite Reynolds numbers. The first is the near-wall region,
where the characteristic velocity scale is the friction ve-
locity uτ and the characteristic length scale is the viscous
length scale, ν/uτ . Here, uτ =

√

τw/ρ, where τw is the
wall shear stress, and ρ and ν are the density and kine-
matic viscosity of the fluid, respectively. Note that for
pipe and boundary layer flows, a reasonable measure of
η, the scale of the smallest eddies, is given by ν/uτ , so
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FIG. 1. Experimental setup and device. a) sketch of Super-
pipe; b) Close-up of the test section with the pressure vessel,
test pipe, and probe holder; c) Drawing of the NSTAP with
60 µm sensing element; d) SEM images of a typical 60µm
NSTAP probe.

that Re+ = Ruτ/ν. The near-wall region is often de-
scribed as extending from the wall out to approximately
y+ = 50. Here, y is the wall-normal distance, and all
“plus” variables are non-dimensionalized using uτ and
ν/uτ , so-called inner variables. Beyond y/R ≈ 0.12 a
wake region exists, where the mean velocity scales with
outer variables, that is, it is a function of y/R and uτ .
One of the primary difficulties with wall-bounded turbu-
lent flows is that it is a two-scale problem, in other words,
the inner and outer region scale according to two differ-
ent sets of variables. This observation, however, leads to
a major result based on an overlap argument, where at a
sufficiently high Reynolds number there would exist be-
tween the near-wall and the wake regions a region where
the mean velocity follows a logarithmic law [8] given by

U+ =
1

κ
ln y+ +B (1)

and κ and B are constants.
However, the very high Reynolds number mean veloc-

ity experiments by McKeon et al. [2], in the Princeton
Superpipe, revealed that the mean velocity follows loga-
rithmic scaling only in the region 600ν/uτ ≤ y ≤ 0.12R.
Between approximately y+ = 50 and 600, the mean ve-
locity instead follows a power law, U+ = A(y+)n, where
A and n are Reynolds number independent constants.
Therefore the log-law does not appear for Reynolds num-
bers less than about 5×103, and a decade of log-law does
not appear until Re+ > 5× 104, a value that is well be-
yond the reach of most laboratory facilities.
Although the mean velocity scaling behavior is now

well established, finding the equivalent scaling behavior
for the turbulence quantities has been particularly elu-
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FIG. 2. Turbulence fluctuations for Re+ = 1985, 3334, 5411,
10481, 20251, 37450, 68371 and 98187. (a) Inner scaled. Cir-
cles show inner and outer peak. (b) Outer scaled. Only
y+ > 100 shown for clarity. Solid line is the log-law of the
turbulent fluctuations.

TABLE I. Experimental conditions

ReD = 2R 〈U〉 /ν Re+ pa [atm] 〈U〉 [m/s] ℓ [µm] ℓ+

81× 103 1,985 1.0 9.5 60 1.8

146× 103 3,334 1.7 10.1 60 3.1

247× 103 5,411 3.2 8.4 60 5.0

513× 103 10,481 6.4 9.4 60 9.7

1.1× 106 20,251 11.5 10.8 60 18.8

2.1× 106 37,450 23.4 10.5 30 17.4

4.0× 106 68,371 46.9 10.4 30 31.7

6.0× 106 98,187 70.7 10.6 30 45.5

sive. The Reynolds number scaling of the streamwise

Reynolds stress, u2
+
, which describes the intensity of

the turbulence, has been the subject of particularly in-
tensive research. Here, we report the scaling behavior of

u2
+

over an unprecedented range of Re+ and degree of
accuracy (see table I for more details). Figure 2a shows
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the resulting values of u2
+

(corrected for spatial filter-
ing effects according to Smits et al. [9]) as a function of
distance from the wall in inner coordinates, y+, for all
Reynolds numbers measured. We begin by examining
the results in the near-wall region. Of particular inter-
est in this region is the scaling behavior of the near-wall

peak in u2
+

located at y+ ≈ 15. This peak is associated
with the location where the turbulence production rates
are highest. In the past, it had been postulated that the
near-wall turbulence was driven solely by the presence of

the wall and therefore u2
+

would depend on inner vari-
ables alone. Earlier studies appeared to support this hy-
pothesis, but results from the high Reynolds number at-
mospheric surface layer and direct numerical simulations
at low Reynolds numbers indicate that the magnitude of
this peak is Reynolds number dependent due to inter-
action between near-wall eddies and those further from
the wall [10]. In contrast, recent low Reynolds number
results from the Superpipe, presented by Hultmark et al.

[11], indicate that the near-wall peak is independent of
Reynolds number, and collapses in inner variables.

The results shown in figure 2a clearly demonstrate that

the magnitude of the near-wall peak in u2
+

at y+ ≈ 15
remains constant, at least up to the highest Reynolds
number where it could be resolved. Our present re-
sults therefore conclusively support Hultmark et al.’s
low Reynolds number observations, and confirm that the
near-wall peak scales on inner variables alone, at least for
pipe flows.

In addition to the inner peak at y+ ≈ 15, the re-
sults presented in figure 2a also reveal the presence of
an outer peak between 100 < y+ < 800 for the three
highest Reynolds numbers measured. Morrison et al. [3]
reported similar behavior, but their observations are fre-
quently dismissed since at their highest Reynolds num-
bers spatial filtering undoubtedly had a significant im-
pact on their measurements. However, the current re-
sults demonstrate conclusively that the existence of this
outer peak is a genuine feature of high Reynolds number
turbulence, and not simply an artifact of spatial filtering.
Furthermore, we can find the position of the outer peak
as a function of Reynolds number as y+

p
= 0.23(Re+)0.67.

The presence of an outer peak has several impor-
tant implications for wall-bounded turbulence at extreme
Reynolds numbers. First, none of the many turbulence
models that are used in Reynolds-averaged Navier-Stokes
methods will predict its appearance, representing a fun-
damental flaw in turbulence modeling. The primary rea-
son is that the turbulence is coupled to the mean veloc-
ity gradient, and since the gradient decreases monotoni-
cally with distance from the wall, such models will never
predict a non-monotonic turbulence behavior. Second,
assuming that the magnitude of the inner peak contin-
ues to remain constant with Reynolds number, at some
Reynolds number the magnitude of the outer peak will

Re+ ≈ 1× 103

Re+ ≈ 1× 104

Re+ ≈ 1× 105

log (y/R)

log (y/R)

log (y/R)

near-wall overlap wake

FIG. 3. Schematic of the different regions of the flow at dif-
ferent Reynolds numbers. To the left in physical space and
to the right on a logarithmic axis. The graph shows the pro-
duction of turbulence kinetic energy in premultiplied form (so
that equal areas under the graph corresponds to equal contri-
butions to the total production).

exceed that of the inner peak, since it will continue to
increase with Reynolds number. Such behavior would re-
flect a shift in the turbulence production away from the
wall with increasing Re+ as a consequence of the continu-
ally increasing separation of scales. Although the rate of
turbulence production will always be a maximum closest
to the wall, our results imply that the peak production
will increasingly occupy a smaller physical region in the
flow as the Reynolds number increases. As illustrated in
figure 3, although the production rates are lower further
away from the wall, turbulence is produced over an in-
creasingly larger area relative to that corresponding to
the near wall production.

The location where the outer peak develops is above
y+ > 50, a region where the mean flow is traditionally
expected to scale logarithmically (see for example, text-
books such as Pope [12]). Within this region, Townsend
[13] hypothesized that turbulence production and dissi-
pation should be in equilibrium. However, the develop-
ment of the outer peak implies that such an equilibrium
does not exist in the region of the outer peak ( y+ <

∼ 800)
since the presence of the peak indicates production ex-
ceeds dissipation here. As a result, we should not expect
true logarithmic scaling of the mean flow this close to
the wall, consistent with the results of McKeon et al. [2],
who found that logarithmic scaling in the mean flow did
not emerge until y+ >

∼ 600.

We now shift our attention to this logarithmically
scaled region, which forms as an overlap layer between
inner and outer scaled regions of the mean flow. It has
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been suggested by Townsend [13] and Perry et al. [14]
that at a sufficiently high Reynolds numbers where the

overlap layer forms, the turbulence intensity u2
+

should
also follow a logarithmic variation such that

u2
+

= B1 −A1 ln
( y

R

)

. (2)

The existence of such a region has never been fully
validated due to the limited range of Reynolds numbers
achieved in previous laboratory studies, although hints of
a logarithmic turbulence behavior have been observed in
data from the atmospheric surface layer [15]. By plotting
the streamwise turbulent fluctuations against y/R, as in
figure 2b, our results conclusively demonstrate the exis-
tence of such a logarithmic behavior for the turbulence
intensity. A regression fit of the three highest Reynolds
numbers indicates that B1 = 1.61 and A1 = 1.25. Perry
et al. [14] argued that the constant A1 is related to the
hierarchy of large eddies in the flow and directly pro-
portional to the eddy-intensity function as introduced by
Townsend [13]. Perry et al. further argued that in pipe
flow the large eddies are influenced by geometric effects
with eddies from the opposing side penetrating into the
flow. However, the existence of a log law in the current
results indicate that only eddies in the wake region are
affected by the geometry.
The measurements presented here are the first to show

the logarithmic scaling of the fluctuations, and that it
only becomes evident for y/R < 0.12 once Re+ >

∼
20×103, with an increasing spatial extent with Reynolds
number. At the highest Reynolds number measured, it
spans more than 10% of the pipe radius. The appear-
ance of this extended logarithmic variation marks the on-
set of the extreme Reynolds number range for pipe flow.
The observation that very high Reynolds number tur-
bulence displays some distinguishing characteristics has
been noted in other flows as well [see, for example, 16].
One particularly interesting observation which we can

make from figure 2b is that the Reynolds number at

which the logarithmically-scaled u2
+

region appears is
approximately the same as the one where the outer peak
emerges. Because the logarithmic region extends all the
way to the outer peak, we can infer that the outer peak
forms as a result of increased scale separation between
the inner-scaled turbulent motions produced at the wall
and the outer-scaled turbulent motions produced further
from the wall.
When comparing profiles of the fluctuating and mean

velocities for very high Reynolds numbers, as is done in
figure 4, we find that the same regions identified by McK-
eon et al. [2] for the mean velocity profile are also ob-
served in the turbulence profile. The region where the

inner peak in u2
+

exists corresponds to the near-wall
region, where the mean velocity and turbulence profiles
scale on inner variables. The region between the inner
and outer peaks is a blending region where the mean
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FIG. 4. Comparison of mean velocity and turbulence stream-
wise fluctuation profiles for Re+ = 98×105 . Red symbols are
mean velocities, blue solid line the log-law for the mean ve-
locity and the black solid line is the power-law for the mean
velocities as described by McKeon et al. [2]. Blue symbols
are the turbulence fluctuations and the red solid line is the
log-law for the fluctuations, as reported in this letter.

profile exhibits a power law behavior (50 <
∼ y+ <

∼ 800).
Further away from the wall, both the mean and turbu-
lence intensity follow a logarithmic behavior extending
up to y/R = 0.12. Finally, an outer region can be iden-
tified for y/R > 0.12 where the mean velocity and the
turbulence intensity scale using outer variables.

These four regions are only truly distinct at the ex-
tremely high Reynolds numbers measured in the current
study. For lower Reynolds numbers, no separation exists
between y+ < 800 and y/R > 0.12 and therefore the
logarithmic region is not evident, neither in the mean
velocity nor in the turbulence. This high degree of corre-
spondence was previously unknown, and presents an im-
portant simplification in the modeling of wall-bounded
turbulence.

In particular, at these extremely high Reynolds num-
bers the logarithmically scaled overlap layer will increas-
ingly dominate the near wall flow, occupying as much as
12% of the pipe radius, whereas the inner-scaled region
at these Re+ values will occupy much less than 1%. Cor-
respondingly, a greater percentage of turbulence produc-
tion will also move to the overlap layer and, at extremely
high Reynolds numbers, the near-wall turbulence produc-
tion cycle will ultimately become irrelevant.
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