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We study the transition to chaos and the emergence of statistical relaxation in isolated dynamical
quantum systems of interacting particles. Our approach is based on the concept of delocalization
of the eigenstates in the energy shell, controlled by the Gaussian form of the strength function.
We show that although the fluctuations of the energy levels in integrable and non-integrable sys-
tems are different, global properties of the eigenstates are quite similar, provided the interaction
between particles exceeds some critical value. In this case, the statistical relaxation of the systems
is comparable, irrespectively of whether they are integrable or not. The numerical data for the
quench dynamics manifest excellent agreement with analytical predictions of the theory developed
for systems of two-body interactions with a completely random character.
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Introduction. - Recent experimental progresses in the
studies of various quantum systems of interacting par-
ticles (see, e.g., [1]) have triggered the interest in basic
problems of many-body physics. One of the important
issues is the onset of thermalization in isolated dynamical
quantum systems due to interparticle interactions.

A prerequisite for thermalization is the statistical re-
laxation of the system to some kind of equilibrium and
its viability has been associated with the onset of quan-
tum chaos. The latter term was originally created to ad-
dress specific properties of dynamical quantum systems
whose classical counterparts are chaotic. Later, it was
found that similar properties of spectra, eigenstates and
dynamics could emerge in quantum systems without a
classical limit, as well as in quantum systems with disor-
dered potentials. Nowadays, the term quantum chaos is
used in a broader context when referring to those prop-
erties, irrespectively of the existence of a classical limit.

According to studies of isolated quantum many-body
systems, their eigenfunctions (EFs) in the mean-field
(mf) basis spread as the interaction between particles
(or quasi-particles) increases and they may eventually
become chaotic eigenstates. The latter term refers to
eigenstates with a large number of uncorrelated compo-
nents, thus allowing one to use statistical methods for
their description [2]. Examples based on experimental
data include excited states of the cerium atom [3] and
compound states in heavy nuclei [4].

It should be stressed that in isolated systems with
finite-range interaction, only part of the basis states |n〉
defined by the non-interacting (quasi)particles is directly
coupled when the perturbation is turned on. Thus, the
exact eigenstates |α〉 =

∑

n C
α
n |n〉 overlap only with some

of the basis states, that is only a fraction of the com-
ponents Cα

n can be nonzero. In the energy represen-
tation, this fraction constitutes the energy shell of the

system. The definitions of localization, sparsity, and er-
godicity that we use are made with respect to the energy
shell [5]. The eigenstate is localized if its nonzero Cα

n ’s are
restricted to a small portion of the shell. The eigenstate
is delocalized if its nonzero components spread through
the whole shell. In this last case, |α〉 is either sparse, if
not all components are nonzero, or ergodic, when it fills
the shell entirely. Both show a very large number of prin-
cipal components (Npc >> 1) strongly fluctuating with
n, but only the latter can lead to truly chaotic eigen-
states. In chaotic eigenstates the coefficients Cα

n are ran-
dom variables following a Gaussian distribution around
the “envelope” defined by the energy shell. They occur
when the interaction exceeds a critical value [2, 5, 7, 8].

The energy shell is associated with the limiting form
of the strength function (SF) written in the energy repre-
sentation [5]. This function is defined via the projection
of unperturbed states onto the basis of perturbed (ex-
act) eigenstates. SF is widely used in nuclear physics
and is analogous to the local density of states in solid
state physics. It has been shown that the shape of SF
changes from Breit-Wigner (Lorentzian) to Gaussian as
the interparticle interaction increases [2, 7, 9, 10].

If a quantum system has a classical limit, the shapes of
both EFs and SFs in the energy representation have clas-
sical analogs. The quantum-classical correspondence of
EFs and SFs has been studied for various few and many-
body systems (see Ref. [6, 11]). Typically, delocalization
of EFs in the energy shell is directly related to the chaoti-
zation of the system in the classical limit, thus providing
a tool to reveal the transition to quantum chaos.

The emergence of chaotic eigenstates has been related
to the onset of thermalization in many-body systems,
even if the latter are isolated from a heat bath [2, 7, 8, 11–
16]. It was shown in [2, 8, 13] that when the eigenstates
become chaotic, the distribution of occupation numbers
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achieves a Fermi-Dirac or a Bose-Einstein form, thus al-
lowing for the introduction of temperature. Using a two-
body random matrix model, a relation between tempera-
ture and interaction strength was analytically derived [2],
implying that the interparticle interaction plays the role
of a heat bath. Since the components of chaotic eigen-
states can be treated as random variables, the eigenstates
close in energy are statistically similar. This fact is at the
heart of the Eigenstate Thermalization Hypothesis [12],
according to which the expectation values of few-body
observables obtained with individual eigenstates corre-
spond to the predictions from a microcanonical ensem-
ble [14, 15].
Even though works about the chaotization of eigen-

states and its relevance to the problem of thermaliza-
tion exist, they are mainly numerical, thus leaving var-
ious questions open. One of these problems, addressed
in this Letter, is the analysis of generic conditions un-
der which chaotic eigenstates emerge in dynamical sys-
tems of current interest in experiments with optical lat-
tices. We consider systems of interacting spin-1/2 par-
ticles, but the results are equivalently valid to systems
of spinless fermions or hardcore bosons. We propose
a semi-analytical method to estimate the critical inter-
action strength leading to the emergence of chaotic-like
eigenstates, which does not require the diagonalization of
the Hamiltonian matrices. We also show how this tran-
sition is reflected by the form of the strength functions.
Another main goal of our work is the analytical descrip-
tion of the relaxation process of such dynamical systems,
a problem that has not been sufficiently studied yet.
The models. - We consider two models of interacting

spins-1/2. One model has only nearest-neighbor (NN)
couplings which results in its complete integrability. The
other model has additional next-nearest-neighbor (NNN)
couplings and becomes chaotic when the two coupling
strengths are comparable. Assuming open boundary con-
ditions, the Hamiltonians read as

H1 = H0 + µV1, H2 = H1 + λV2, (1)

H0 = J

L−1
∑

i=1

(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

, V1 = J

L−1
∑

i=1

Sz
i S

z
i+1,

V2 =

L−2
∑

i=1

J
[(

Sx
i S

x
i+2 + Sy

i S
y
i+2

)

+ µSz
i S

z
i+2

]

,

where µ and λ control the perturbation in Model 1 and
Model 2, respectively. Here, L is the number of sites,
Sx,y,z
i = σx,y,z

i /2 are the spin operators at site i, with
σx,y,z
i as the Pauli matrices and h̄ = 1. The coupling

strength J defines the energy scale and is set to 1.
In Model 1, H0 determines the mf-basis in which the

total Hamiltonian H1 is presented. This term moves the
up-spins through the chain and can be mapped onto a
system of noninteracting spinless fermions [17] or of hard-
core bosons [18], being therefore integrable. The system

remains integrable when the Ising interaction V1 is added,
no matter how large the anisotropy parameter µ is. The
total Hamiltonian H1 is known as the XXZ Hamiltonian
and can be solved exactly via the Bethe Ansatz [19].

In Model 2, H1 determines the mf-basis and V2 is
treated as the “residual interaction” responsible for the
onset of chaos. The parameter λ refers to the ratio be-
tween NNN and NN exchange.

Depending on the parameters of the Hamiltonians (1),
different symmetries are identified [20]. For the sake of
generality, we avoid them by restricting our analysis to a
subspace with L/3 up-spins and µ 6= 1. We fix µ = 0.5
for Model 2. The only remaining symmetry is parity. We
take it into account by studying only even states, which
leads to subspaces of dimensionN ∼ (1/2)L!/[(L/3)!(L−
L/3)!]. All data are given for L = 15.

Spectrum statistics. - According to the common lore,
we analyze first the level spacing distribution P (s) for
both models, numerically obtained for different values of
the control parameters µ and λ. For Model 1, P (s) is
close to the Poisson distribution for any value of µ. For
Model 2, the transition of P (s) from Poisson to Wigner-
Dyson as λ increases is shown in Fig. 1. The standard
approach of fitting P (s) with the Brody distribution [21]
allows us to extract the repulsion parameter β character-
izing the transition between the two distributions. From
Fig. 1, the transition for Model 2 occurs at λ ≈ 0.5.
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FIG. 1: Left: P (s) for Model 2 with λ = 0.1, 0.5 compared
with the Wigner-Dyson distribution (smooth curve). Right:
Brody parameter β as a function of λ.

The transition of P (s) from Poisson to Wigner-Dyson
is typical of non-integrable systems of interacting parti-
cles. It was also seen in Bose-Hubbard models [22–24],
which are of interest to experiments with optical lattices.
The transition can occur both due to dynamical interac-
tion only [22] and due to additional strong disorder [23].
The relevance of this transition to observable physical
effects is discussed in Refs. [24].

Emergence of chaotic eigenstates. - Much more infor-
mation about the systems is contained in the structure
of the eigenstates. Our data show that as the strength
of the perturbations V1 and V2 increases, the eigenstates
of both integrable and non-integrable models undergo a
transition from localized to chaotic-like. Typical exam-
ples of the amplitudes Cα

n of such eigenstates with en-
ergy Eα from the center of the energy band are shown
in Fig. 2. Here, the eigenstates are given as a function
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of the unperturbed energy εn rather than in the basis
representation, following the one-to-one correspondence
between |n〉 and its energy εn.
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FIG. 2: Typical localized (top) and extended (bottom) eigen-
states for Model 1 (left) and Model 2 (right).

In order to find the critical parameters µcr and λcr

above which the perturbation is strong and the eigen-
states are extended (in the energy shell), different ap-
proaches may be employed. We start by analyzing the
matrix elements of H1 and H2. It is important to take
into account that in each line n of the Hamiltonians,
the perturbation couples directly only Mn unperturbed
states [2, 25]. We have numerically found that at the
center of the energy band, Mn ≈ N/4 and Mn ≈ N for
Models 1 and 2, respectively (see [26] for more details).
Thus, the Hamiltonian matrix of the integrable model is
more sparse than the matrix of Model 2.

To determine the critical perturbation, we compare
the average value of the coupling strength, vn =
∑

m 6=n |Hnm|/Mn, of each line n with the mean level
spacing dn between directly coupled states. The mean
level spacing can be estimated as dn = [εmax

n −εmin
n ]/Mn,

where εmax
n (εmin

n ) is the unperturbed energy correspond-
ing to the largest (smallest) m where Hnm 6= 0. Our
results show that for µ > µcr ≈ 0.5 and λ > λcr ≈ 0.5
the ratio vn/dn becomes larger than 1 and the pertur-
bation is considered to be strong. Notice that for Model
2, the obtained value of λcr corresponds to the onset
of the Wigner-Dyson statistics, as independently found
from the level spacing distribution. This is remarkable if
we take into account that no diagonalization was neces-
sary to derive the above estimates.

Strength function: From Breit-Wigner to Gaussian. -
Another way to obtain the critical values µcr and λcr re-
lies on the shape of SF. The latter corresponds to the
dependence of wα

n = |Cα
n |

2 on the exact energies Eα

for each fixed unperturbed energy εn. It contains in-
formation about the energies Eα that become accessible
to an initial state |n〉 when the perturbation is turned
on. Clearly, SF is related also to the structure of EFs,
since the latter is derived from the same wα

n , but now as
a function of the unperturbed energies εn.

In quantum many-body systems, the form of SF typi-
cally changes from Breit-Wigner to Gaussian as the inter-

particle interactions increase [2, 7, 9]. This transition
occurs when the half-width of the Breit-Wigner distri-
bution becomes comparable to the width of the energy
shell. In this case, as we show next, there emerge chaotic
eigenstates filling the whole available energy shell.
The energy shell corresponds to the distribution of

states obtained from a matrix filled only with the off-
diagonal elements of the perturbation. It is associ-
ated with the maximal SF, that is the SF that arises
when the diagonal part of the Hamiltonian can be ne-
glected. We verified that the energy shell coincides with
a Gaussian of variance σ2 given by the second moment
of the off-diagonal elements of the matrix Hamiltonian,
σ2 =

∑

m 6=n |Hnm|2 [2]. Note that no diagonalization is
required to derive this expression.
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FIG. 3: (Color online) Strength functions for Model 1 (left)
and Model 2 (right) obtained by averaging over 5 close states
in the middle of the spectrum. Middle panels : circles give a
Breit-Wigner fit. Lower panels : circles stand for a Gaussian
fit. In all panels, solid curves correspond to the Gaussian form
of the energy shells.

Our numerical data confirm that the transition from
Breit-Wigner to Gaussian occurs for the same critical val-
ues obtained above, µcr , λcr ≈ 0.5, as indicated in Fig. 3.
In the figure, the envelopes of the SFs were obtained by
smoothing the dependence of wα

n on Eα for fixed unper-
turbed energies εn with n ≈ N/2. The fit to either a
Breit-Wigner or a Gaussian form was done with high ac-
curacy, allowing us to discriminate between the two func-
tions. It is noteworthy the excellent agreement between
the Gaussian fit and the Gaussian obtained simply from
the off-diagonal elements of the Hamiltonians.
Structure of eigenstates in energy shell. - The eigen-

states may be localized, sparse or ergodically extended
in the energy shell. The data in Fig. 4 demonstrate that
for a sufficiently strong perturbation the eigenstates un-
dergo a transition from strongly localized to extended
states, somehow filling the energy shell. The transition
to chaotic-like eigenstates occurs again at the same criti-
cal parameters µcr , λcr ∼ 0.5. These results confirm the
predictions made on the basis of both, the estimate of
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vn/dn and the Gaussian form of the strength functions.
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FIG. 4: Structure of eigenstates in the energy shells for Model
1 (left) and Model 2 (right) obtained by averaging over 5
states in the middle of the energy band. Solid curves corre-
spond to the Gaussian form of the energy shell.

One notices that above the critical value, as shown by
the bottom panels of Fig. 4, the eigenstates of Model
1, differently from those of Model 2, do not fill the en-
tire energy shell, even for very strong perturbation. At
the same token, a close inspection of the level of delo-
calization of individual EFs and SFs has revealed other
differences between the two models. Overall, delocaliza-
tion measures, such as the inverse participation ratio or
the Shannon entropy, show larger fluctuations for Model
1 than for Model 2 [26]. This agrees with recent results
obtained for bosonic and fermionic systems [15].
Statistical relaxation. - Ref. [27] showed that when the

two-body interaction between particles is completely ran-
dom, allowing for an analysis in terms of two-body ran-
dom ensembles, the quench dynamics can be described
analytically. In our case, the two models are dynamical,
without any randomness ab initio. Yet, we show below
that when the interaction strength exceeds the critical
value corresponding to the onset of chaotic-like eigen-
states, the theory developed in Ref. [27] works perfectly
for both integrable and non-integrable models. This re-
sult is important in view of possible experimental obser-
vations in various systems of interacting spins-1/2.
By quench dynamics we mean the time evolution of

initial states corresponding to unperturbed vectors which
takes place once the interaction is turned on. To see how
the relaxation occurs, we study the time dependence of
the Shannon entropy S in the mf-basis. For an initial
state |n0〉, it is defined as

Sn0
(t) = −

N
∑

n=1

Wn(t) lnWn(t) (2)

with Wn(t) =
∣

∣

∑

α Cα
nC

α∗
n0

e−iEαt
∣

∣

2
. To reduce fluctua-

tions, we average over 5 initial basis states excited in a

narrow energy range in the middle of the spectrum.
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FIG. 5: (Color online) Shannon entropy vs rescaled time for
Model 1 (left) and Model 2 (right) for strong perturbation.
Circles stand for numerical data, solid curves correspond to
Eq. (3), and dashed lines show the linear dependence (4).

An analytical expression for Sn0
(t) was derived in [27],

Sn0
(t) = −Wn0

(t) lnWn0
(t)−[1−Wn0

(t)] ln

(

1−Wn0
(t)

Npc

)

.

(3)
Here Wn0

(t) is the probability for the system to stay in
the initial state |n0〉 and Npc is the average number of
directly coupled states. We obtain Npc numerically ac-
cording to Npc = 〈eS〉, where the average 〈.〉 is performed
over a long time after the saturation of the entropy.
Figure 5 shows numerical data for the relaxation pro-

cess of both models. Initially, the entropy grows quadrat-
ically, as given by perturbation theory. Afterwards, a
clear linear growth is observed before S(t) reaches relax-
ation. With high accuracy the linear behavior of S(t) is
described by the simple relation [27],

Sn0
(t) ≈ σn0

t lnMn0
. (4)

Note that Eq. (4) depends only on the elements of the
Hamiltonian: σ2

n0
=

∑

m 6=n0
|Hn0m|2 and Mn0

is the con-
nectivity of line n0. As seen in Fig. 5, the analytical ex-
pressions (3) and (4) give a correct description of the en-
tropy growth for bothmodels in the regime corresponding
to the onset of chaotic-like eigenstates delocalized in the
energy shell. The same relation (4) was found to emerge
also for an integrable model of interacting bosons [28].
Conclusion. - We have studied the spectrum statistics,

the structures of eigenstates and strength functions, and
the quench dynamics for two models of interacting spins,
connecting the results with the onset of chaotic eigen-
states and the emergence of statistical relaxation. The
key point of our approach is the existence of an energy
shell of finite range, inside which the eigenfunctions can
be either localized or extended. We have shown that the
critical parameters above which the eigenstates become
chaotic-like can be equally found by simply studying the
elements of the Hamiltonian or by analyzing the shape
of the strength function. The latter provides the form of
the energy shell, thus allowing one to clearly define the
notion of delocalized eigenstates in the energy shell.
Our study shows that Wigner-Dyson level statistics is

not important for the onset of statistical relaxation. In-
deed, by studying the time dependence of the Shannon
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entropy, we have shown that numerical data are in full
agreement with the analytical predictions of the quench
dynamics, provided the eigenstates are chaotic-like. In
this case, the relaxation process for both integrable and
non-integrable systems becomes very similar. This result
does not contradict ETH, but identifies the primary con-
ditions for the thermalization of isolated quantum sys-
tems. Our approach is very general and expected to ap-
ply to different systems of interacting particles, such as
those currently under theoretical and experimental inves-
tigation.
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