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Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays
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We study modulational instability in nonlinear arrays of subwavelength metallic nanoparticles,
and analyze numerically nonlinear scenarios of the instability development. We demonstrate that
modulational instability can lead to the formation of regular periodic or quasi-periodic modula-
tions of the polarization. We reveal that such nonlinear nanoparticle arrays can support long-lived
standing and moving oscillating nonlinear localized modes – plasmon oscillons.
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Nonlinearity-induced instabilities are observed in
many different branches of physics, and they provide
probably the most dramatic manifestation of strongly
nonlinear effects that can occur in Nature. Modulational
instability (MI) in optics manifests itself in a decay of
broad optical beams (or quasicontinuous wave pulses)
into optical filaments (or pulse trains) [1], and such ef-
fects are well documented in both theory and experiment.
MI is also observed for partially spatially incoherent light
beams in noninstantaneous nonlinear media with the pat-
tern formation from noise [2]. It is expected that the
study of subwavelength nonlinear systems such as metal-
lic nanowires or nanoparticle arrays may bring many new
features to the physics of MI and the scenarios of its de-
velopment, however such effects were never studied be-
fore.

Over the past decade, surface plasmon polaritons (or
plasmons) were suggested as the mean to overcome the
diffraction limit in optical systems. In particular, by us-
ing plasmons excited in a chain of resonantly coupled
metallic nanoparticles [3], one can spatially confine and
manipulate optical energy over distances much smaller
than the wavelength. In addition, strong geometric con-
finement can boost efficiency of nonlinear optical effects,
including the existence of subwavelength solitons [4].

In this Letter, we study modulational instability in
subwavelength nonlinear systems for an array of opti-
cally driven metallic nanoparticles [5–8] with a nonlinear
response. We demonstrate the existence of novel types
of nonlinear effects in such subwavelength systems never
discussed before, including the generation of regular or
quasi-periodic polarization patterns and oscillating local-
ized modes which can be termed oscillons, in analogy
with the similar localized modes excited in driven gran-
ular materials [9] and Newtonian fluids [10].

Figure 1 shows the geometry of our problem: a chain of
identical spherical silver nanoparticles is embedded into a
fused silica host medium with permittivity εh and driven
by an external optical field with the frequency close to
the frequency of the surface plasmon resonance of an in-
dividual particle. We assume that the particle radius

and distance between the particles are a = 10 nm and
d = 30 nm, respectively. Ratio a/d satisfies the condi-
tion a/d ≤ 1/3, so that we can employ the point dipole
approximation [5]. In the optical spectral range, a linear
part of silver dielectric constant can be written in a gen-
eralized Drude form εLAg = ε∞ − ω2

p/[ω(ω − iν)], where
ε∞ = 4.96, ~ωp = 9.54 eV, ~ν = 0.55 eV [11] (here-
inafter we accept exp(iωt) time dependence); whereas
dispersion of SiO2 is neglected since εh ≃ 2.15 for wave-
lengths 350-450 nm [12]. Nonlinear dielectric constant

of silver is εNL
Ag = εLAg + χ(3)|E(in)

n |2, where E
(in)
n is the

local field inside n-th particle. We keep only cubic sus-
ceptibility due to spherical symmetry of particles. Cur-
rently, there is no reliable theoretical models describing
nonlinear optical response of metal nanoparticles, how-
ever experimental data shows that χ(3) depends on many
factors, including duration and frequency of the external
excitation as well as particle characteristics themselves
(metal type and size) [13]. According to the model sug-
gested in Ref. [14] and confirmed in experiment, 10 nm
radii Ag spheres possess a remarkably high and purely
real cubic susceptibility χ(3) ≃ 3 × 10−9 esu, in com-
paring to which the cubic nonlinearity of SiO2 is weak
(∼ 10−15 esu [15]).

We study nonlinear dynamics of our chain by employ-
ing the dispersion relation method [16] that allows deriv-

FIG. 1. (Color online) Schematic sketch demonstrating ge-
ometry of the studied problem. Arrows indicate particle po-
larizations after MI development.
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ing a system of coupled equations for slowly varying am-
plitudes of the particle dipole moments. This approach
is based on the assumption that in the system there are
small and large time scales, which in our case is fulfilled
automatically since each particle acts as a resonantly ex-
cited oscillator with slow (in comparison with the light
period) inertial response.
We start with the standard expression for the electric

dipole moment induced in the n-th particle written for
Fourier transforms

αn(ω)
−1pn = E(ex)

n +
∑

m 6=n

En,m, (1)

where

αn(ω) = εh

{

εNL
Ag (ω) + 2εh

a3[εNL
Ag (ω)− εh]

+ i
2

3
k3

}−1

is the electric polarizability of the n-th particle, E
(ex)
n is

the external electric field acting on n-th particle,

En,m =

(

(1 + ikd|n−m|) 3(r0 · pm)r0 − pm

εh|n−m|3d3

+k2
pm − (r0 · pm)r0

εh|n−m|d

)

e−ikd|n−m|

is in charge of dipole-dipole interaction betweenm-th and
n-th particles, k = ω/c

√
εh, r0 is the unit vector point-

ing from the m-th to the n-th particle. Assuming that

χ(3)|E(in)
n |2 ≪ 1 and ν/ω0 ≪ 1, we decompose αn(ω)

−1

in the vicinity of the frequency of the surface plasmon
resonance of an individual particle, ω0 = ωp/

√
ε∞ + 2εh,

and keep the first-order terms involving time derivatives
for describing (actually small) broadening of the particle
polarization spectrum,

α−1
n ≈ αn(ω0)

−1 +
dα−1

n

dω

∣

∣

∣

∣

ω=ω0

(

∆ω − i
d

dt

)

, (2)

where ∆ω is the frequency shift from the resonance value.

Having expressed E
(in)
n via pn, we substitute Eq. (2)

into Eq. (1) and write En,m in the same order of the
perturbation theory and obtain the equations,

−i
dP⊥

n

dτ
+
(

−iγ +Ω + |Pn|2
)

P⊥

n +
∑

m 6=n

G⊥

n,mP⊥

m = E⊥

n ,

−i
dP ‖

n

dτ
+
(

−iγ +Ω+ |Pn|2
)

P ‖

n +
∑

m 6=n

G‖

n,mP ‖

m = E‖

n,

(3)

where

G⊥

n,m =
η

2

(

(k0d)
2 − ik0d

|n−m| −
1

|n−m|2
)

e−ik0d|n−m|

|n−m| ,

FIG. 2. (Color online) Nonlinear dispersions of (a) longitudi-
nal and (b) transverse eigenmodes of an infinite chain. Dashed
curves correspond to the linear limit. Vertical dashed line in
(b) marks the light line, k0 = ω0/c

√
εh.

G‖

n,m = η

(

ik0d

|n−m| +
1

|n−m|2
)

e−ik0d|n−m|

|n−m| ,

P⊥,‖
n = p⊥,‖

n

√

χ(3)/(
√

2(ε∞ + 2εh)εha
3) and E⊥,‖

n =

−3εh
√

χ(3)E
(ex)⊥,‖

n /
√

8(ε∞ + 2εh)3 are dimensionless
slowly varying amplitudes of the particle dipole moments
and external electric field, respectively, the indices ’⊥’
and ’‖’ stand for the transverse and longitudinal compo-

nents with respect to the chain axis, η = 3εh
ε∞+2εh

(

a
d

)3
,

|Pn|2 = |P⊥
n |2+|P ‖

n|2, γ = ν/(2ω0)+(k0a)
3εh/(ε∞+2εh)

describes thermal and radiation losses of particles, k0 =
ω0/c

√
εh, Ω = (ω − ω0)/ω0 and τ = ω0t. Equations (3)

describe temporal nonlinear dynamics of a chain of metal-
lic nanoparticles driven by arbitrary external optical field
with the frequency ω ∼ ω0. We stress that the suggested
model takes into account all particle interactions through
the dipole fields, and it can be applied to both finite and
infinite chains, being also extended to higher dimensions.
First, we consider an infinite chain. For the station-

ary unbiased linear case, when d/dτ = 0 and E⊥,‖
n = 0,

we look for solutions in the form P⊥,‖
n ∼ exp (−inKd),

and from Eqs. (3) find well-known dispersion relations
for transverse and longitudinal eigenmodes of the sys-
tem [7], shown in Fig. 2. Taking into account nonlinear-
ity just shifts the dispersion curves along the frequency
axis. Light line, which for Ω << 1 takes the form
k0 = ω0/c

√
εh, divides the eigenmodes into fast (with

K < k0) and slow (with K > k0) experienced strong and
weak radiation damping, respectively. Logarithmic sin-
gularity occurred at K = k0 for the transverse modes is
caused by the phase matching between the chain mode
and the plane wave traveling in the host medium.
To study MI, we excite the chain by an homogenous

electric field with one of the two polarizations: (i) En =
(E⊥

0 , 0) and (ii) En = (0, E‖

0). In this case, all particle
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FIG. 3. (Color online) (a) Bifurcation diagram showing bista-
bility regime and different scenarios of modulation instability
development for longitudinal excitations, as a function of Ω
and |E‖

0
|2. (b) Contour map of λ‖ on the plane (Kd, |E‖

0
|2)

at Ω = −0.07. Horizontal dashed lines (1) and (2) mark the
intensities of the external light used in numerical simulations
of Eq. (3) shown in Figs. 4(a,b), respectively.

dipole moments remain the same, P⊥,‖
n = P⊥,‖

0 , and the
system stationary states can be written as follows



−iγ +Ω+

∞
∑

j=1

A⊥,‖

j + |P⊥,‖

0 |2


P⊥,‖

0 = E⊥,‖

0 , (4)

where A⊥
j = η

(

(k0d)
2j−1 − ik0dj

−2 − j−3
)

exp (−ik0dj),

and A‖

j = 2η
(

ik0dj
−2 + j−3

)

exp (−ik0dj). Transition

from G⊥,‖
n,m to A⊥,‖

j has been made via the replace-
ment |n − m| = j and taking into account symmetry
structure of the series. When Ω < −Re

∑∞
j=1 A

⊥,‖

j −
√
3
(

γ − Im
∑∞

j=1 A
⊥,‖

j

)

, the polarization P⊥,‖

0 becomes

a three-valued function of E⊥,‖

0 leading to bistability.
Next, we analyze linear stability of the stationary

states with respect to weak spatiotemporal modulations
and derive the expression for the instability growth rate,

λ⊥,‖ = γ̃⊥,‖+

{

|P⊥,‖

0 |4−
(

2|P⊥,‖

0 |2+Ω+Re

∞
∑

j=1

B⊥,‖

j

)2}1/2

,

where γ̃⊥,‖ = Im
∑∞

j=1 B
⊥,‖

j − γ, B⊥,‖

j = A⊥,‖

j cos(Kdj).
Thus, the initial nonlinear homogenous states (4) become
unstable provided λ⊥,‖ > 0. The stability depends on the
external field parameters E⊥,‖

0 and Ω as well as on the
modulation wavenumber K.
Next, we consider the case of the longitudinal excita-

tion in detail. The condition λ‖ = 0 at any K defines
the boundaries of MI in the plane (Ω, |E‖

0 |2) shown in
Fig. 3(a). Interestingly, the middle and upper branches
in the bistable region of dependency P ‖

0 (E
‖

0) also corre-
spond to MI, but the development inside the bistability
region cannot be reached because the middle branch is
unstable, while the system transition from the lower to
upper branch itself initiates appearance of MI.
Figure 3(b) shows a contour map of λ‖ in the plane

(Kd, |E‖

0 |2) at Ω = −0.07. Remarkably, MI takes place

FIG. 4. (Color online) Dynamics of Re P ‖
n obtained by numer-

ical simulations of Eq. (3) for a finite chain excited longitudi-
nally with (a) Ω = −0.07, |E‖

0
|2 = 0.1× 10−4; (b) Ω = −0.07,

|E‖

0
|2 = 4.9 × 10−4; (c) Ω = −0.02, |E‖

0
|2 = 2.65 × 10−4; and

(d) Ω = −0.09 and |E‖

0
|2 = 0.11 × 10−4.

only for slow eigenmodes of the chain. As follows from
Fig. 3(b), one can manage eigenmode spectrum excited
during MI growth by varying |E‖

0 |2 only. In particular,
when |E‖

0|2 is chosen to be close to the lower or upper
edge of the MI domain, just one spatial harmonic should
be excited, with correspondingly Kd ≃ 0.7 or Kd = π.

However, the linear stability analysis does not provide
any information about the subsequent evolution of the
unstable system, especially when the external field ex-
cites a broad spectrum of eigenmodes. To analyze those
scenarios, we perform numerical simulations of Eq. (3)
for a finite chain (with 100 nanoparticles) at zero initial
conditions. Edge effects play a role of small perturbations
needed for generating MI. The amplitude of the homo-
geneous external field is supposed to be slowly growing
to the saturation level E‖

0 (which is reached at τ ≈ 100)
lying in the MI zone.

Characteristic results are summarized in Figs. 4(a-d).
When E‖

0 crosses the lower edge of the MI domain [de-
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FIG. 5. (Color online) (a) Bifurcation diagram for transverse
excitation. (b) Contour map of λ⊥ on the plane of parameters
(Kd, |E⊥

0 |2) at Ω = −0.07. (c) Snapshot of Re P⊥

n at τ =
700 obtained numerically from Eq. (3) with Ω = −0.07 and
|E⊥

0 |2 = 1.5 × 10−4, indicated in (b) by a horizontal dashed
line. Points joined by dashed lines give a guide for the eye.

picted by a dashed line (1) in Fig. 3(b)], we observe
that MI results in the excitation of one eigenmode with
Kd ≃ 0.7 [see Fig. 4(a)], in accord with the prediction
of the linear stability analysis. The excited eigenmode
acts as modulation of the initial almost homogenous state
which becomes unstable. That is why Re P ‖

n tend to be
predominantly positive. They are just biased by the ex-
ternal field.

Figure 4(b) shows the case when the external field of
larger amplitude excites a wide eigenmode spectrum [in-
dicated by dashed line (2) in Fig. 3(b)] [17]. Here, MI
leads to the formation of a stationary higher-order mode
along with oscillating localized states. Some of them ap-
peared to be unstable and decay, whereas others remain
stable. Importantly, such soliton-like localized modes
may be at rest or they can drift slowly along the chain,
as shown in Figs. 4 (b,c). We notice that these oscilla-
tory localized states in a driven chain are very similar to
spatiotemporal structures termed oscillons observed pre-
viously in other types of dissipative systems [9, 10], and
we refer to them as plasmon oscillons. We point out that
the plasmon oscillons may exist not only in the form of
solitary states but they also can create patterns, as il-
lustrated in Fig. 4(d) [17]. We have studied some of the
properties of such oscillatory states, and the results will
be published elsewhere.

Finally, we conduct the similar analysis for the case

of the transversal excitation. Figure 5(a) shows the cor-
responding bifurcation diagram. In contrast to the lon-
gitudinal case, the MI region is fully placed inside the
bistability domain capturing a part of the lower branch in
the dependence P⊥

0 (E⊥
0 ). According to the contour map

of λ⊥ in the plane (Kd, |E⊥
0 |2) shown in Fig. 5(b), the

spectrum of excited eigenmodes can be tuned by vary-
ing the value of |E⊥

0 |2, in analogy with the longitudinal
case. Nevertheless, the width of spectrum weakly affects
the scenarios of the MI development. Numerical simula-
tions of Eq. (3) demonstrate that, independently on the
value of E⊥

0 , the growth of MI results in switching of the
system from the lower to upper branch in the bistabil-
ity region of P⊥

0 (E⊥
0 ). In the case of a finite chain, MI

is accompanied by a pair of switching waves (kinks) at
the edges which move towards each other, as shown in
Fig. 5(c) [17].

The observation of MI requires high illuminating pow-
ers, higher than 10 MW/cm2, that could cause thermal
damage to particles. To estimate maximal duration of
the external laser pulse, we use the results of previous
studies on the ablation thresholds for gold films [18] pro-
viding values of 1.6 J/cm2 and 0.6 J/cm2 for 1 ns and
1 ps pulses, respectively. Gold demonstrates stronger
thermal losses than silver at optical frequencies. That
is why this data is completely acceptable. Taking into
account amplification of electric field inside nanoparti-
cles due to surface plasmon resonance, we come to the
external threshold intensities of 3.6 MW/cm2 and 1.3
GW/cm2 corresponding to 1 ns and 1 ps pulses, respec-
tively. Thus, ablation of silver particles will not be crit-
ical at least till pulse durations of 1 ps. As the charac-
teristic time of the MI growth is of (λ⊥,‖ω0)

−1 ≃ 10 fs
that is much less than the maximal pulse duration, all
predicted effects seem readily observable in experiment.

In conclusion, we have studied theoretically modu-
lational instability in arrays of subwavelength metallic
nanoparticles, and analyzed numerically the development
of such instabilities beyond the linear approximation. We
have observed that modulational instability can be en-
hanced substantially by the geometric confinement, and
it can lead to the formation of regular periodic or quasi-
periodic polarization patterns. We have observed the
generation of long-lived standing and moving oscillating
nonlinear localized modes in the form of plasmon oscil-
lons. The experimental observation of the predicted mod-
ulational instability can provide a prominent approach to
achieve subwavelength confinement of the optical fields
guided by plasmonic nanostructures.
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