This is the accepted manuscript made available via CHORUS. The article has been published as:

Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm3
DOI: 10.1103/PhysRevLett.108.091102
The past several years have seen a virtual explosion in the number of identified extra-solar planets discovered. Two rapidly growing populations of exoplanets are ice giants referred to as “hot Neptunes” and “mini-Neptunes”; [1] planets roughly the same size as or, respectively, smaller than Neptune and Uranus that transit their host stars at significantly smaller radii, resulting in higher temperatures than the ice giants in our solar system. Understanding of the composition and formation of these planets, and thus development of these planetary systems, relies on our knowledge of the equation of state (EOS) of light elements and compounds like water. Here we present shock compression data for water with unprecedented accuracy that shows water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets, and should improve our understanding of these types of planets.

PACS numbers: 96.15.Kc, 62.50.-p, 64.30.-t

Recently there has been tremendous increase in the number of identified extra-solar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds like water. Here we present shock compression data for water with unprecedented accuracy that shows water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets, and should improve our understanding of these types of planets.

The past several years have seen a virtual explosion in the number of identified extra-solar planets discovered. Two rapidly growing populations of exoplanets are ice giants referred to as “hot Neptunes” and “mini-Neptunes”; [1] planets roughly the same size as or, respectively, smaller than Neptune and Uranus that transit their host stars at significantly smaller radii, resulting in higher temperatures than the ice giants in our solar system. Understanding of the composition and formation of these planets, and thus development of these planetary systems, relies on our knowledge of the equation of state (EOS) of light elements and compounds like water, over a wide pressure and temperature range. To date much of the modeling of ice giants has employed the ANEOS [2] and Sesame [3] models for water that were developed decades ago [4, 5]. Discrepancies between these EOS models lead to significant differences in predicted radius evolution of Neptune-mass planets. Depending upon the total amount of heavy elements, and their distribution within the planetary interior, the resulting variation in predicted radius at a given age due to the water EOS can range between 5 and 30% [6]. This is a major factor in preventing accurate determination of exoplanet internal composition from their observed radius.

Recent quantum molecular dynamics (QMD) calculations of water [7, 8] suggest an EOS that differs significantly from ANEOS and Sesame. Notably, when incorporated into planetary models, this first-principles (FP) based EOS predicts a ~20% cooler core temperature for Neptune and Uranus [9]. The conductivity properties of this FP model are also noteworthy [10], suggesting that water is super-ionic [11, 12] at high densities, ρ, and low temperatures, T, relevant to planets such as Uranus and Neptune. This predicted property plays a key role in dynamo models to explain the enigmatic magnetic field structure of these planets [13, 14]. Another important result is derived from the predicted phase diagram of water: the icy giants Uranus and Neptune perhaps contain no “ice” but dissociated water at a high ionic conductivity, even less so would close-in exoplanets. Hot and mini-Neptunes may even comprise water plasma with substantial electronic conduction. However, the FP EOS for water has not been widely accepted due to its inability to reproduce results from laser driven shock wave experiments in the Mbar regime [15].

We present results of magnetically accelerated flyer-plate experiments on water performed at the Sandia Z machine [16], a pulsed power accelerator capable of producing extremely large current (~20 MA) and magnetic field densities (~10 MG) within a short circuit load. These data, in the range of 100-450 GPa along the Hugoniot – the locus of end states achievable through compression by large amplitude shock waves – have considerably higher precision than data obtained with previously used methods, and support the FP EOS for water. The high precision stems from the ability to perform well-defined flyer-plate experiments on Z; the magnetic pressure (>500 GPa) can propel the outer anode to velocities approaching 30 km/s, enabling high-precision, plate-impact EOS measurements in the TPa regime [17-19]. Furthermore, and more significantly, the present work obtained re-shock data of water in the range of 200-700 GPa. These data, at high ρ and low T, provide a stringent test of the isentropic response of water in the several Mbar regime, which is directly relevant to the conditions of interest for planetary modeling of Neptune, Uranus [9, 14], and presumably water-rich exoplanets such as the hot Neptune GJ436b [9, 20, 21]. Finally, reflectivity on the Hugoniot was measured and compared to FP calculations for water [22].

An aluminum flyer-plate [23] was magnetically accelerated to peak velocities of 12-27 km/s across a 3-4 mm
FIG. 1. $P - u_p$ diagram for the water experiments for the case with the additional quartz drive plate.

The shock was transmitted into the water, a release wave propagates back toward the flyer-plate, and thus the state of the drive plate is constrained to lie on a release adiabat from this point in the $P - u_p$ plane, shown in Fig. 1 as the green line. The shocked state of the water is constrained to lie along a chord in the $P - u_p$ plane with slope given by the product of the measured shock velocity of water, U_{sw}, and the known initial density. The intersection of these two curves provides P and u_p, shown in Fig. 1 as (P_1, u_{p1}).

The velocity of the second shock in the water, u_{p2}, was then determined by the RH jump relations using the measured flyer-plate (quartz shock) velocity; this defined a point in the pressure - particle velocity $(P - u_p)$ plane, as shown in Fig. 1. When the shock transits into the water, a release wave propagates back toward the flyer-plate, and thus the state of the drive plate is constrained to lie on a release adiabat from this point in the $P - u_p$ plane, shown in Fig. 1 as the green line. The shocked state of the water is constrained to lie along a chord in the $P - u_p$ plane with slope given by the product of the measured shock velocity of water, U_{sw}, and the known initial density. The intersection of these two curves provides P and u_p, shown in Fig. 1 as (P_1, u_{p1}).

The shocked state of the water is constrained to lie on a release adiabat from this point in the $P - u_p$ plane, shown in Fig. 1 as the green line. The shocked state of the water is constrained to lie along a chord in the $P - u_p$ plane with slope given by the product of the measured shock velocity of water, U_{sw}, and the known initial density. The intersection of these two curves provides P and u_p, shown in Fig. 1 as (P_1, u_{p1}).

Using this technique, the one-sigma uncertainties in P and ρ were found to be 0.5% and 1%, respectively.

A total of 8 Hugoniot experiments were performed over the range of 100 to 450 GPa. Results of these experiments are shown as the red symbols in Fig. 2(a). Also shown are Hugoniot data of Mitchell and Nellis [28], Volkov et al. [29], Celliers et al. [15], and Podurets et al. [30], and the predicted Hugoniot response from ANEOS [2], Sesame 7150 [3], and the recent FP EOS model of French et al. [7, 8]. Note that a reanalysis of the nuclear driven datum of Podurets et al., using an improved aluminum standard for impedance matching [27], resulted in a slight decrease in ρ. The low-P end of our data is in good agreement with the gas gun data of Mitchell and Nellis and the explosively driven shock data of Volkov et al. In contrast, our data are significantly less compressible than the laser driven data of Celliers et al., which tend to support the much more compressible ANEOS and Sesame Hugoniots, albeit with significantly large uncertainty and scatter. The vastly reduced uncertainty in ρ for our data, roughly an order of magnitude, strongly suggest that water is much less compressible than the ANEOS and Sesame models predict, and that water is instead very accurately described by the FP EOS of French et al. Furthermore, the reanalyzed Podurets et al. datum is also in very good agreement with the FP EOS. Thus, with the exception of the Celliers et al. data, the FP based model for water matches all experimental Hugoniot data up to 1.4 TPa.

In all 8 of the Hugoniot experiments described above, the reflected shock from the rear quartz window drove the water from the Hugoniot state to a re-shocked state at higher P and ρ. The measured shock velocity in the water immediately prior to reflection from the rear quartz window defined the initial shocked state of the water. The measured shock velocity in the rear quartz window and the known Hugoniot of quartz provided the double-shocked P and u_p for water, shown in Fig. 1 as (P_2, u_{p2}). The velocity of the second shock in the water, U_{sw2}, was then determined by the RH jump relations using the...
change in P, $(P_2 - P_1)$, and u_p, $(u_{p2} - u_{p1})$. The re-shock ρ was then determined from U_{sw2}, the first shock
ρ, and $(u_{p2} - u_{p1})$. Using the Monte Carlo technique,
the one-sigma uncertainties in P and ρ for the re-shock
states were found to be 0.5-1% and 1-2%, respectively.
Although the uncertainty for the re-shock data is larger
than that for the principal Hugoniot data (entirely due
to the larger uncertainty in the initial state), the accu-
ricity of the present data is a significant improvement over
previous re-shock data of Mitchell and Nellis [28] (uncer-
tainty in ρ of 4-14%) and the pre-compressed Hugoniot
data of Lee et al. [31], (uncertainty in ρ of 5-10%).

The re-shock data for water are shown in Fig. 2(b),
where first and second shock states are correlated by like
symbols. Also shown are several FP re-shock Hugoniots
(thin red lines) and isentropes (thin black lines) for com-
parison [7]. These re-shock Hugoniots along with the
known Hugoniot of quartz [19] were used to determine the
double-shock envelopes - the locus of end states achiev-
able through shock and re-shock using a quartz anvil:
FP (orange line), ANEOS [2] (pink line), and Sesame [3]
(gray line). These re-shock data further confirm the less
compressible response of water above 100 GPa.

Note that the FP re-shock Hugoniots (red) and isen-
tropes (black) are nearly coincident over the ρ range ac-
cessed through the re-shock experiments. This is due to
a second order contact for the Hugoniot and isentrope
at the initial state [26], which is most easily seen by ex-
panding the entropy as a function of volume in a Taylor
series. This implies that the Hugoniot and isentrope are
very close in P and ρ until, at large compression, the rise
in T associated with the irreversible shock becomes large
enough that thermal pressures become significant. In the
range investigated in this study, the difference in T be-
tween the re-shock Hugoniot states and the isentrope at
the re-shock ρ, as determined by the FP EOS [7], ranged
from 200K (out of 6800K) to 330K (out of 40000K) at
the lowest and highest P, respectively. This makes such
a re-shock measurement the best possible test of the isen-
tropic response of the EOS model in this range of P and
ρ. Thus the present data validates the isentropic response
of the FP EOS in the P and ρ regime that is intersected
by the water-rich models of Neptune and Uranus [9, 14],
shown in green, and the exoplanet GJ436b [20, 21, 23],
shown in blue.

The VISAR was also used to infer reflectivity, R, of
water (at 532 nm) along the Hugoniot. A quadrature
VISAR was used for all experiments, which provides
four measures of the interference signal at 90° inter-
vals. The signals at 180° intervals can be subtracted,
ensuring the remaining signal only includes coherent re-
lected laser light (incoherent light, such as self-emission
from the hot plasma, would equally contribute to all four
quadrature signals). Comparison of the magnitude of
these subtracted signals before and after shock break-
out from the water to the quartz rear window provides a
relative measure of the shocked water R with respect
to shocked quartz [25]. The uncertainty in R was taken
to be the linear sum of the standard deviation of the in-
ferred R from the nine independent VISAR signals ob-
tained from each water cell and the reported uncertainty
in R of shocked quartz [25]. R data along the Hugoniot are shown in Fig. 3. Also
shown are data from Celliers et al. [15] and the predicted
R from FP calculations of French and Redmer [22] using
both the Perdew, Burke, and Ernzerhof (PBE) and Heyd,
Scuseria, and Ernzerhof (HSE) functionals for exchange
correlation. It was anticipated that the HSE func-
tional, which includes the nonlocal Fock exchange, would
prove to be more accurate in the calculation of R, as this
functional has been shown to better reproduce the band
gap in semiconductor materials (PBE is known to signifi-
cantly underestimate the band gap).
HSE calculations are less accurate. However, our data suggest a much lower peak R, which is in significantly better agreement with the HSE calculations. We note that two recent data points (\sim140 and 260 GPa) from a group [32] at the Gekko laser in Japan also suggest lower R, in very good agreement with our results. These new results lend confidence to the FP calculations, which also predict a super-ionic phase of water at low T and high ρ conditions relevant to planetary interiors. Furthermore, these results strongly suggest that at these conditions water is in a plasma phase, which would imply that a T=0 K EOS for water is not sufficient for modeling of hot and mini-Neptunes, and that water would be expected to mix in the H/He envelope rather than form an ice shell separate from an outer H/He envelope.

We presented data with unprecedented accuracy for shock compression of water to 0.7 TPa and 3.8 g/cc in a regime relevant to water-rich models of Uranus, Neptune and the exoplanet GJ436b. The experimental P, ρ, and R are in excellent agreement with density functional theory predictions, thereby validating first-principles thermodynamic calculations as a sound basis for planetary modeling, and strongly advocating the FP EOS be the standard in modeling water in Neptune, Uranus, and “hot Neptune” exoplanets. In particular this work supports the prediction of a \sim20% cooler core temperature for Neptune and Uranus [9]. As the calculated amount of H and He in the planets decreases with the stiffness of the water EOS, confidence in the presence of a few percent H and He in the deep interior of Neptune and Uranus, as derived from the (rather stiff) FP EOS based models [7,9], is strengthened by this work. As H would be metallic, this might influence the generation of the magnetic field. Furthermore, the validation of the FP EOS in the regime relevant to planetary interiors all but eliminates one significant source of uncertainty in the predicted radius evolution of Neptune-mass planets within assumed composition models. This will improve our understanding of the interior structure of these planets, and perhaps our understanding of these planetary systems.

We acknowledge the crew of the Sandia Z facility for their contributions to these experiments, AB and MB for assistance in numerical calculations, and support from the DFG via the SFB 652 and the grant Re 882/11-1. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.