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Detection of gravitational waves from the inspiral phase of binary neutron star coalescence will allow us to
measure the effects of the tidal coupling in such systems. These effects will be measurable using 3rd generation
gravitational wave detectors, e.g. the Einstein Telescope, which will be capable of detecting inspiralling binary
neutron star systems out to redshift z ≈ 4. Tidal effects provide additional contributions to the phase evolution
of the gravitational wave signal that break a degeneracy between the system’s mass parameters and redshift
and thereby allow the simultaneous measurement of both the effective distance and the redshift for individual
sources. Using the population of O(103–107) detectable binary neutron star systems predicted for the Einstein
Telescope the luminosity distance–redshift relation can be probed independently of the cosmological distance
ladder and independently of electromagnetic observations. We present the results of a Fisher information anal-
ysis applied to waveforms assuming a subset of possible neutron star equations of state. We conclude that for
our range of representative neutron star equations of state the redshift of such systems can be determined to an
accuracy of 8–40% for z < 1 and 9–65% for 1 < z < 4.
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Introduction— Making use of gravitational-wave (GW)
sources as standard sirens (the GW analogue of
electromagnetic (EM) standard candles) was first pro-
posed in [1]. It was noted that the amplitude of a GW signal
from the coalescence of a compact binary such as a binary
neutron star (BNS) is a function of the redshifted component
masses and the luminosity distance. Since the former can
be estimated separately from the signal phase evolution, the
luminosity distance can be extracted and such systems can
be treated as self-calibrating standard sirens. This indicated
that GW observations do not require the cosmological
distance ladder to measure distances but concluded that EM
observations would be needed to measure the redshift of GW
sources. Upon detection of a GW signal from a compact
binary coalescence, one could localize the source on the
sky using a network of GW detectors. The host galaxy
of the source could then be identified and used to obtain
accurate redshift information whilst inferring the luminosity
distance from the GW amplitude. This idea that GW and EM
observations could complement each other in this way was
subsequently extended to include the fact that BNS events
are now thought to be the progenitors of most “short-hard”
Gamma-Ray bursts (GRBs) [2]. The expected temporal
coincidence of these events would allow the more accurately
measured sky position of the GRB to be used to identify the
host galaxy. Recent work [3–6] has explored the technical
details regarding the data analysis of BNS standard sirens
with respect to the advanced, 3rd generation ground-based
GW detectors with the aim of investigating the potential
of GW observations as tools for performing precision cos-
mology. The possibility of cosmological measurements
with space-based detectors events is also promising [7, 8].

In addition we note that statistical arguments based on the
assumed neutron star (NS) mass distribution can also be used
to infer redshift information from BNS events [9]. This novel
approach is similar to the work we present here in that it is
independent of EM counterparts.

The operation of the initial generation of interferometric
GW detectors has been successfully completed. This com-
prised a network of four widely-separated Michelson interfer-
ometers: the Laser Interferometer Gravitational-wave Obser-
vatory (LIGO) detectors [10] in Washington and Louisiana,
USA, GEO600 [11] in Hannover, Germany and Virgo [12]
in Cascina, Italy. We now await the construction of the ad-
vanced detectors [13] which will recommence operations in
∼2015 and promise to provide the first direct detection of
GWs. It is expected that in this advanced detector era the
most likely first detections will be from compact binary coa-
lescences of BNS systems for which detector configurations
are being tuned [14]. Astrophysical estimates suggest a rate
of detection of at least a few, and possibly a few dozen, per
year [15] with typical signal-to-noise-ratio (SNR) ∼ 10. Al-
ready much effort has been spent on the design of a 3rd gen-
eration GW detector the Einstein Telescope (ET) [16] which
is anticipated to be operational by ∼2025. It is designed to
be ∼10 times more sensitive in GW strain than the advanced
detectors and as such we would expect to detect O(103–107)
BNS events per year [4, 15] with SNRs ranging up to ∼ 100.

In this letter we highlight an important feature associated
with the information that we will be able to extract from BNS
waveforms using 3rd generation GW interferometers, in par-
ticular ET [16]. We show that the addition of the tidal cou-
pling contribution to the GW waveform breaks the degener-
acy present in post-Newtonian (PN) waveforms between the
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mass parameters and the redshift. This will then allow the
measurement of the binary rest-frame masses, the luminos-
ity distance and redshift simultaneously for individual BNS
events. We base our work on the assumption that the de-
tections of BNS and black-hole—neutron star (BHNS) co-
alescences made using both the advanced detectors and ET
(specifically the nearby high SNR signals) would tightly con-
strain the universal NS core equation of state (EOS) [17–20].
Once the EOS is known, the tidal effects are completely deter-
mined by the component rest-frame masses of the system. Ex-
ploitation of these effects would then remove the requirement
for coincident EM observations (so-called “multi-messenger”
astronomy) to obtain redshift information. In using GRB
counterparts for example, host galaxy identification [21] can
sometimes be unreliable, and we also require that the emis-
sion cone from the GRB is coincident with our line of sight.
Current estimates of the half-opening angles of GRBs lie in
the range 8–30◦ [22, 23], which coupled with the fact that
only some short-hard GRBs have measured redshifts imply
that only a small fraction (∼10−3) of BNS events will be use-
ful as standard sirens. Removing the necessity for coincident
EM observations will allow all of the O(103–107) BNS events
seen with ET to be assigned a redshift measure independent
of sky position. Each of these detected events provides a mea-
sure of the luminosity distance–redshift relation ranging out
to redshift z ≈ 4. With so many potential sources the ob-
served distribution of effective distance (the actual luminosity
distance multiplied by a geometric factor accounting for the
orientation of the binary relative to the detector) within given
redshift intervals will allow the accurate determination of ac-
tual luminosity distance and consequently of cosmological pa-
rameters including those governing the dark energy equation
of state. Such a scenario significantly increases the potential
for 3rd generation GW detectors to perform precision cosmol-
ogy with GW observations alone.

In our analysis we use a Fisher matrix approach applied to
a PN frequency domain waveform to estimate the accuracy
to which the redshift can be measured. We also assume non-
spinning component masses and treat the waveform as valid
up to the innermost-stable-circular orbit (ISCO) frequency,
the implications of which are discussed later in the text.

The signal model—We follow the approach of [24, 25] in
our determination of the uncertainties in our inspiral wave-
form parameters. We use as our signal model the frequency
domain stationary phase approximation [26] to the waveform
of a non-spinning BNS inspiral,

h̃( f ) =

√
5

24
π−2/3Q(ϕ)

M5/6

r
f −7/6e−iΨ( f ), (1)

where we are using the convention c = G = 1. We define
the total rest mass M = m1 + m2 and the symmetric mass ra-
tio η = m1m2/M2 where m1 and m2 are the component rest
masses. The chirp mass M is defined as M = Mη3/5, r is
the proper distance to the GW source and Ψ( f ) is the GW
phase. The quantity Q(ϕ) is a factor that is determined by
the amplitude response of the GW detector and is a function

of the nuisance parameters ϕ = (θ, φ, ι, ψ) where θ and φ are
the sky position coordinates and ι and ψ are the orbital incli-
nation and GW polarization angles respectively. The standard
post-Newtonian point-particle frequency domain phase can be
written as [25, 27]

ΨPP( f ) = 2π f tc − φc −
π

4
+

3
128ηx5/2

N∑
k=0

αk xk/2 (2)

where we use the post-Newtonian dimensionless parameter
x = (πM f )2/3 and the corresponding coefficients αk given
in [25]. Throughout this work we use N = 7 corresponding
to a 3.5 PN phase expansion (the highest known at the time
of publication). The parameters tc and φc are the time of co-
alescence and phase at coalescence and we use f to represent
the GW frequency in the rest frame of the source. Note that
if the signal is modeled using the point-particle phase such
that Ψ( f ) = ΨPP( f ) then the detected signal h̃( f ) is invari-
ant under the transformation ( f ,M, r, t) → ( f /ξ,Mξ, rξ, tξ)
where ξ is a Doppler-shift parameter. For BNS systems at
cosmological distances the frequency is redshifted such that
f → f /(1 + z) where z is the source’s cosmological red-
shift. Therefore, using the point-particle approximation to the
waveform one is only able to determine the “redshifted” chirp
mass Mz = (1 + z)M and the so-called luminosity distance
dL = (1 + z)r. This implies that it is not possible to disentan-
gle the mass parameters and the redshift from the waveform
alone if the proper distance is unknown.

The leading-order effects of the quadrupole tidal response
of a neutron star on post-Newtonian binary dynamics have
been determined [17, 28] using Newtonian and 1PN approxi-
mations to the tidal field. The additional phase contribution to
a GW signal from a BNS system is given by

Ψtidal( f ) =
∑
a=1,2

3λa
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]
where we sum over the contributions from each NS (indexed
by a). The parameter λ = (2/3)R5

nsk2 characterizes the
strength of the induced quadrupole given an external tidal
field, and is a function of the l = 2 tidal Love number (ap-
sidal constant) k2 for each NS [19, 29]. We have also defined
χa = ma/M. Note that the tidal contributions to the GW phase
in Eq. 3 have the frequency dependences of x5 and x6, and are
5PN and 6PN since when viewed in the context of the point-
particle post-Newtonian phase expansion (Eq. 2). However,
for NSs, their coefficients are O(Rns/M)5∼105, making them
comparable in magnitude with the 3PN and 3.5PN phasing
terms.

For a chosen universal NS EOS, the perturbation of a spher-
ically symmetric NS solution for a given NS mass determines
the NS radius Rns, Love number k2 and therefore also the
tidal deformability parameter λa. For the purposes of this
work we use the relationship between the NS mass and the
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tidal deformability parameter expressed graphically in Fig. 2
of [17]. Our approach models this relationship as a first-order
Taylor expansion around the canonical NS mass value such
that λ(m) = λ1.4 + (dλ/dm)1.4(m − 1.4M�) where λ1.4 and
(dλ/dm)1.4 are the values of the tidal deformability parame-
ter and its derivative with respect to mass, both evaluated at
m = 1.4M�.

We now highlight the fundamental feature of this work.
With the addition of the tidal phase components to the total
GW phase such that Ψ( f ) = ΨPP( f )+Ψtidal( f ) the waveform is
no longer invariant under the type of transformation discussed
above. The point-particle PN phase as measured at the detec-
tor is a function of the redshifted chirp massMz and luminos-
ity distance dL in contrast to the tidal phase component which
contains terms dependent upon the un-redshifted rest-frame
mass components m1 and m2. The degeneracy between the
mass parameters and the redshift is therefore broken and one
can now theoretically measure both sets of quantities inde-
pendently of one another. Essentially, the NS size provides a
fixed scale-length that is imprinted on the GW waveform. The
ability to perform this measurement is based on the assump-
tion that one knows or has a very well constrained NS EOS.
As shown in [20], in the advanced detector era, departures
from the point-particle limit of the GW waveform as the stars
approach their final plunge and merger will place strong con-
straints on the EOS-dependent tidal response of neutron stars.
In the 3rd generation GW detector era, specifically the ET [16],
the subset of high-SNR BNS signals from local galaxies will
provide even tighter constraints. The addition of future EM
observational constraints on the EOS (as can be seen currently
in [30, 31]) will also contribute to a well-understood NS EOS
by the ET era.

The choice of upper cut-off frequency for our model is an
important issue. The standard approach to tidal effects on GW
waveforms has been to use only the Newtonian tidal correc-
tion term and to truncate the signal corresponding to a rest-
frame GW frequency of 450 Hz. The primary reason that
such a choice has been made is to limit the contributions
to the phase evolution from various higher order effects to
<10%. With the addition of the 1PN tidal phase correction,
and neglecting the small known higher-multipole contribu-
tions [32], the tidal description is limited by nonlinear and
resonant tidal effects [33] at the end of inspiral. Concurrently,
the PN formalism also breaks down at the ISCO frequency
fISCO = (63/2πM)−1 (∼1500 Hz for 1.4M� BNS systems)
where the secular approximation, that the mode frequency is
large compared to the orbit frequency, also becomes invalid.
However, recent numerical relativity (NR) simulations [34–
36] show that EOS effects can be accurately modelled in the
late inspiral, and that the waveform contains an EOS signa-
ture that is amenable to analytic modelling. In anticipation
of future analytical models valid up to the merger phase, we
choose to use the ISCO as our cut-off frequency, noting that
this is applied using un-redshifted mass in the source’s local
frame.

The standard Fisher matrix formalism [37, 38] allows us to
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FIG. 1. The fractional uncertainties in the redshift as a function of
redshift obtained from the Fisher matrix analysis for BNS systems
using 3 representative EOSs, APR [40], SLY [41] and MS1 [42]. In
all cases the component NSs have rest masses of 1.4M� and wave-
forms have a cut-off frequency equal to the ISCO frequency (as de-
fined in the BNS rest-frame). We have used a cosmological param-
eter set H0 = 70.5 kms−1Mpc−1, Ωm = 0.2736, Ωk = 0,w0 = −1
to compute the luminosity distance for given redshifts and have as-
sumed detector noise corresponding to the ET-D [16, 39] design (a
frequency domain analytic fit to the noise floor can be found in [43]).

compute the uncertainties associated with the measurement of
a set of signal parameters. In the large SNR regime under the
assumption of Gaussian noise the signal parameters θ have
probability distribution p(δθ) ∝ exp(−(1/2)Γi jδθ

iδθ j), where
δθi = θi− θ̂i and θ̂i are the best fit parameter values. The Fisher
matrix Γi j is computed via Γi j = (∂h/∂θi, ∂h/∂θ j) where the
brackets in this case indicate the noise weighted inner prod-
uct. The expected errors in the measurement of the parameter
set δθ are then defined by the square root of the diagonal el-
ements of the inverse Fisher matrix. We follow [25] in our
treatment of the parameter estimation analysis for BNS GW
signals with the addition of the redshift z as a parameter. We
therefore use θ = (lnA, tc, φc, lnMz, η, z) as our independent
parameters where we have absorbed all amplitude informa-
tion in to a single parameterA via h̃( f ) = A f −7/6e−iΨ( f ). The
expected SNR of a given BNS signal is dependent upon the
nuisance parameters ϕ. For simplicity we have computed our
results using the ET-D detector design configuration [16, 39]
assuming an SNR that has been appropriately averaged over
each of the 4 constituent angles of ϕ. The detection range of
ET for BNS systems is z≈1 for such an angle averaged signal
and an SNR threshold of 8. For an optimally oriented system
at the same SNR threshold the horizon distance is z ≈ 4.

Results—The results of the analysis with respect to the un-
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certainties in the redshift measurement as a function of red-
shift are shown in Fig. 1 for a subset of EOSs. We have cho-
sen the following 3 (given in order of increasing λ) labeled
APR [40], SLY [41] and MS1 [42] as representative samples
from the set of 18 EOSs considered in Hinderer et al. [17].
The tidal deformability parameter λ for each EOS has been
parameterized as a function of the NS mass as described above
and is directly proportional to the level of the tidal phase con-
tribution. Note that for our most pessimistic choice of EOS,
the redshift can be measured to better than 40% accuracy for
sources at z<1 and then worsens to only 65% at the maxi-
mum redshift range, z≈4, of ET. For the most optimistic of
our representativeEOSs we see corresponding values of 8%
and 15%. The general trend of the results (for all EOSs) is
that the fractional redshift uncertainty remains approximately
constant up to z≈1 increasing only by a factor of ∼1.5 for the
most distant sources at z≈4. The relationship between the ac-
curacy of redshift determination and the EOS is, as expected,
proportional to the NS deformability parameter λ. The con-
sistency of the redshift determination as a function of redshift
can be explained by the combination of 2 competing effects.
Naively one would expect that the drop in SNR at higher red-
shifts would cause any parameter estimation to degrade. This
is true and is the cause of the final rise in the fractional redshift
error at high redshifts. In parallel, as the more distant sources
have their waveforms redshifted to lower frequencies, the tidal
effects which formally begin at 5PN order and have greatest
effect close to the cut-off frequency, are moved towards the
most sensitive band of the detector (∼150 Hz). From this ar-
gument one would conclude that this “sweet spot” would co-
incide with z∼10 but this effect is diluted at higher redshifts
due to a reduction in SNR as the lower frequency part of the
signal moves out of band.

Discussion—The analysis presented here is a proof of prin-
ciple and is based on a number of assumptions and simplifi-
cations which we would like to briefly discuss and in some
cases reiterate. It is likely that by the 3rd generation GW de-
tector era our knowledge of the tidal response in BNS systems
will have significantly advanced through improved NR simu-
lations [44]. Current NR simulations have already shown that
modelling these tidal phase corrections using a PN formal-
ism, while qualitatively accurate, significantly underestimate
the tidal phase contribution [34–36]. In addition these same
studies suggest that it is possible to accurately model tidal ef-
fects up to the merger phase. Therefore we feel that our use
of the ISCO as the upper cut-off frequency of the PN wave-
forms is a well justified choice for this first estimate. We have
also neglected the effects of spin in our investigation which
we expect to contribute to the PN phase approximation at the
level of ∼0.3% [17]. This does not preclude the possibility
that marginalizing over uncertainties in spin parameters may
weaken our ability to determine the redshift. This seems un-
likely given the small expected spins in these systems, as well
as the difference inscalings between the spin terms and the
tidal terms, x−1/2 and x5/2 respectively, causing the tidal ef-
fects to dominate over spin in the final stage of the inspiral.

We also note that the Fisher information estimate of parame-
ter uncertainty is valid in the limit of SNR & 10 [38] and under
the assumption of Gaussian noise. As such, the results at low
SNR, and therefore those at high z, should be treated as lower
limits via the Cramer-Rao bound, on the redshift uncertainty.
We also mention here that since the tidal phase corrections
are, at leading order, formally of 5th PN order we have uncer-
tainty in the effect of the missing PN expansion terms in the
BNS waveform between the 3.5PN and 5PN terms. It is com-
forting to note that as the PN order is increased our results
on the redshift uncertainty do converge to the point of <1%
difference in accuracy between the 3 and 3.5PN terms imply-
ing (through extrapolation) that the missing PN terms (as yet
not calculated) would not effect our results. Future detailed
analysis following this work will complement Fisher based
estimates with Monte-Carlo simulations and/or Bayesian pos-
terior based parameter estimation techniques. Similarly, the
signal parameter space should be more extensively explored
beyond the canonical 1.4M�, equal mass case. In addition,
future work will also include BHNS systems which will also
contain, encoded within their waveforms, extractable redshift
information. Such systems are observable out to potentially
higher redshift although tidal effects will become less impor-
tant as the mass ratio increases [18? ]. Finally, we briefly
mention that GW detector calibration uncertainties in strain
amplitude (which for 1st generation detectors were typically
<10%) will only effect the determination of the luminosity
distance. Calibration uncertainties in timing typically amount
to phase errors of <1◦ and would be negligible in the determi-
nation of the redshift. Similarly, the effects of weak lensing
that would only affect the luminosity distance measurement
have been shown to be negligible for ET sources [4].

Conclusions—Current estimates on the formation rate of
BNS systems imply that in the 3rd generation GW detector
era there is the potential for up to ∼107 observed events per
year out to redshift z ≈ 4 [16]. The results presented here
suggest that redshift measurements at the level of ∼10% ac-
curacy can be achieved for each BNS event solely from the
GW observation. Such systems have long been known as GW
standard sirens [1], meaning that the luminosity distance can
be extracted from the waveform with accuracy determined by
the SNR coupled with the ability with which one is able to
infer the geometric orientation of the source. Using a large
number of sources all sharing the same redshift, the luminos-
ity distance (free of the orientation parameters) can be de-
termined statistically from the distribution of observed am-
plitudes. With the ability to extract both the luminosity dis-
tance and the redshift out to such cosmological distances and
from so many sources the precision with which one could then
determine the luminosity distance–redshift relation is signifi-
cantly enhanced. Current proposed methods for making cos-
mological inferences using GW standard sirens [3, 5, 45] rely
on coincident EM counterpart signals from their progenitors
in order to obtain the redshift. Our method would allow mea-
surements to be made independently of the cosmological dis-
tance ladder.
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