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Motivated by recent experiments on material Ba3NiSb2O9, we propose two novel spin liquid
phases (A and B) for spin-1 systems on a triangular lattice. At the mean field level, both spin
liquid phases have gapless fermionic spinon excitations with quadratic band touching, thus in both
phases the spin susceptibility and γ = Cv/T saturate to a constant at zero temperature, which
are consistent with the experimental results on Ba3NiSb2O9. On the lattice scale, these spin liquid
phases have Sp(4) ∼ SO(5) gauge fluctuation; while in the long wavelength limit this Sp(4) gauge
symmetry is broken down to U(1)×Z2 in type A spin liquid phase, and broken down to Z4 in type
B phase. We also demonstrate that the A phase is the parent state of the ferro-quadrupole state,
nematic state, and the noncollinear spin density wave state.

PACS numbers:

A quantum spin liquid (QSL) is a ground state of an in-
sulating magnet with vanishing static local moments and
exotic emergent excitations.[1] Within spin wave theory
for the simplest Heisenberg Hamiltonians, quantum fluc-
tuations rapidly decrease with increasing spin quantum
number S, so it is often believed that QSLs may occur
only in the extreme case of S =1/2 spins. Indeed, the
most promising empirical QSL materials are comprised
of spin-1/2 moments[2–7]. However, when the Hamilto-
nian deviates from the Heisenberg form, quantum effects
can be enhanced also for higher spin, leading to ground
states beyond the usual magnetically ordered ones. The-
oretically, biquadratic and other higher order exchange
terms have been argued to favor multipolar ordered and
QSL states in particular materials, such as the triangu-
lar lattice spin-1 magnet NiGa2S4 [8–12] and certain or-
dered double perovskites[13]. Quite unexpectedly, recent
experiments have evidenced QSL behavior in the spin-1
magnet Ba3NiSb2O9, with spins residing on triangular
lattices with AB stacking.[14] Although the Curie-Weiss
temperature of this material is θCW ∼ −75K, no mag-
netic ordering or phase transition was observed down to
a temperature of 0.35K, approximately 200 times lower
than |θCW |. The low temperature thermodynamics of
this material is strikingly similar to that of the geomet-
rically similar spin-1/2 organic triangular lattice QSLs
[5, 15–17]. In particular, the spin susceptibility χ and lin-
ear coefficient of specific heat γ = cv/T in Ba3NiSb2O9

both saturate to constants at low temperature [14].

Most theoretical approaches to QSLs rely on slave par-
ticle methods, and/or wave functions which correspond
to slave particles. While these approaches have been ex-
tensively developed for S =1/2 systems, there has been
little theoretical work on them for the S =1 case. We con-
sider this here. To sharpen the discussion, we assume the
presence of SU(2) spin symmetry, and seek QSL states
in this framework which match the basic phenomenology

so far observed in the low temperature thermodynamics.
One way of studying spin-1 system is by introducing

three flavors of fermionic spinon fα (α = 1−3) as follows
[18, 19]: Ŝa = f †

αS
a
αβfβ, and S

a are three spin-1 matri-
ces. In order to guarantee the equivalence of the spin
Hilbert space and the spinon Hilbert space, one must
impose the gauge constraint

∑

α f
†
i,αfi,α = 1, fixing the

spinon density locally to 1/3-filling. At the mean field
level, the spinon fα forms a Fermi surface whose area is
1/3 of the Brillouin zone. A spinon Fermi surface seems
to be consistent with constant χ and γ observed experi-
mentally. However, beyond the mean field theory, due to
the single occupancy constraint, the spinon fermi surface
is coupled to a dynamical U(1) gauge field. This U(1)
gauge field has a “dressed” over-damped z = 3 dynam-
ics due to its coupling to the Fermi surface, which leads
to a γ = Cv/T ∼ T−1/3 at low temperature [20, 21],
inconsistent with experiment. One solution of this prob-
lem is to introduce pairing of the spinons in the mean
field state. This has its own difficulties: either a gap
is induced and impurities must be invoked to restore the
proper thermodynamics,[22] or spin-rotational symmetry
must be strongly broken.[19]
General Formalism We start instead by representing

the spin-1 operators in the following way:

Ŝµi =
1

2

∑

α,β=↑,↓

∑

a=1,2

f †
α,a,iσ

µ
αβfβ,a,i. (1)

Here σµ are three spin-1/2 Pauli matrices. Each spinon
fα,a has two indices: α =↑, ↓ denotes spin and a = 1, 2
is an “orbital” quantum number. Thus we can consider
not only the usual spin SU(2) rotations in the α − β
space, but also orbital SU(2) transformations in the a−b
space. Matching with the spin Hilbert space requires not
only constraining the total fermion number to half-filling

(two fermions per site), but also requiring each site to be
an orbital SU(2) singlet, which guarantees that the spin
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space is a symmetric spin-1 representation:

n̂i =
∑

a=1,2

∑

α=↑,↓

f †
α,a,ifα,a,i = 2,

τ̂µ =
∑

α,a,b

f †
α,a,iτ

µ
abfα,b,i = 0. (2)

Here τµab are three Pauli matrices that operate on the
orbital indices. A similar slave fermion formalism with
orbital indices was introduced in Ref. [23], and it was ap-
plied to two-orbital SU(N) magnets that can be realized
in Alkaline earth cold atoms [24–26].
Due to these two independent constraints in Eq. 2, the

spinon fα,a appears to have the following U(1)× SU(2)
gauge symmetries:

U(1)c : fα,a,i → eiθifα,a,i;

SU(2)o : fα,a,i → [ei
~θi·~τ/2]abfα,b,i. (3)

By rewriting fα,a,i in terms of Majorana fermions η as
follows, however, a larger gauge symmetry is exposed:

fα,a,i =
1

2
(ηα,a,1,i + iηα,a,2,i). (4)

On every site, ηi has in total three two-component
spaces, making the maximal possible transformation
on ηi SO(8). Within this SO(8), the spin SU(2)
transformations are generated by the three operators
(σxλy, σy, σzλy), where the Pauli matrices λa op-
erate on the two-component space (Re[f ], Im[f ]). The
total gauge symmetry on η is the maximal subgroup
of SO(8) that commutes with the spin-SU(2) operators.
This is Sp(4) ∼ SO(5) generated by the ten matrices
Γab =

1
2i [Γa,Γb], where

Γ1 = σyτyλz , Γ2 = σyτyλx, Γ3 = τyλy ,

Γ4 = τz , Γ5 = τx. (5)

These Γa with a = 1 · · · 5 define five gamma matrices that
satisfy the Clifford algebra {Γa,Γb} = 2δab. Γab and Γa
are all 8×8 hermitian matrices. Γab are all antisymmetric
and imaginary, while Γa are symmetric.
We consider a spin-1 Heisenberg model on the triangu-

lar lattice with both nearest neighbor and 2nd neighbor
antiferromagnetic couplings. Based on the above spinon
representation of spin-1 operators, the Heisenberg model
can be rewritten as follows:
∑

i,j,µ

Jij Ŝ
µ
i Ŝ

µ
j ∼

∑

i,j,µ

Jijf
†
α,a,iσ

µ
αβfβ,a,if

†
γ,b,jσ

µ
γρfρ,b,j

∼ −2Jij∆̂
∗
ab,ji∆̂ba,ji +Const,

∆̂ab,ji = εαβfα,a,jfβ,b,i. (6)

Decoupling through a hopping term is also possible, but
we do not pursue this here. To analyze Eq. (6), we adopt

a mean field ansatz with nonzero pairing 〈∆̂ab,ji〉, so that
the spinon fα,a fills a mean field band structure. To im-
prove beyond mean field, a variational spin wave function
may be obtained by projecting the mean field ground
state to satisfy Eq. (2):

|Gspin〉 =
∏

i

P(n̂i = 2)⊗ P(τ̂µi = 0)|fα,a〉. (7)

The general formalism discussed above can describe
many novel spin liquid states, with various different
gauge fluctuations that are subgroups of Sp(4). Here
we focus on simple states which satisfy the phenomenol-
ogy of Ba3NiSb2O9[14], and in particular demand linear
specific heat and constant susceptibility. We consider the
following ansatz, which is a d+id pairing state of spinons:

〈∆̂ab,(i,i+ê)〉 =
(

δab∆
(m)
1 + τzab∆

(m)
2

)

(ex + iey)
2, (8)

where ê is any of the nearest-neighbor or 2nd neighbor
unit vectors, and ∆(m) with m = 1, 2 denotes the pairing
amplitude on the nearest and 2nd neighbor links respec-
tively. This is a spin singlet but orbital triplet. Because
the pair wave function vanishes when two spinons are on
the same site, such states may be particularly insensitive
to the projection in Eq. 7.
Continuum theory: In the majority of the paper, we

consider the case with ∆
(m)
2 = 0. Then, expanded at

~k = 0, the low energy mean field Hamiltonian reads

H ∼ ηt{(∂2x − ∂2y)Γ13 + 2∂x∂yΓ23}η,

Γ13 = −σyλx, Γ23 = σyλz . (9)

This mean field Hamiltonian has quadratic band-
touching at ~k = 0. Using the same method as intro-
duced in Ref. [27], one can verify that this mean field
Hamiltonian breaks the Sp(4) gauge symmetry down to
a U(1)× Z2 gauge symmetry:

ηi → eiθiΓ45ηi, ηi → Qiηi, Qi ∈ {1, Γ4}. (10)

Notice that the U(1) and Z2 gauge transformations do
not commute with each other.
In addition to the quadratic band touching at ~k = 0,

depending on ∆(m), there are multiple Dirac points in
the Brillouin zone. For instance, when ∆(2) < ∆(1),
there are Dirac points at the Brillouin zone corners
~Q = ±(4π/3, 0). A complex Dirac fermion field ψ at

momentum ~Q = (4π/3, 0) can be defined as

η~r = ψ~re
i ~Q·~r + ψ†

~re
−i ~Q·~r. (11)

The low energy Hamiltonian for ψ reads Hψ ∼
ψ†(iΓ13∂x − iΓ23∂y)ψ. However, the Dirac fermion has
vanishing density of states at zero energy, and thus con-
tributes sub-dominantly to the η spinon in many physical
properties.
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The spinon carries a projective representation of physi-
cal symmetry. Under discrete symmetry transformations,
the low energy spinon fields η and ψ transform as:

Tx : x→ x+ 1, η → η, ψ → ei4π/3ψ;

T : t→ −t, η → iΓ12η, ψ → iΓ12ψ
†;

I : ~r → −~r, η → η, ψ → ψ†;

Py : x→ −x, η → iΓ13η, ψ → iΓ13ψ
†;

Rπ/3 : (x+ iy) → eiπ/3(x + iy),

η → ei
π

3
Γ12η, ψ → ei

π

3
Γ12ψ†. (12)

These transformations guarantee that there is no rele-
vant fermion bilinear perturbation that does not break
physical symmetry. For instance, the fermion bilinear
f †
i fi ∼ ηtΓ12η breaks the time-reversal symmetry; thus
it is forbidden in the Hamiltonian. In Ref. [28], a stable
quadratic band touching model was discussed, and it was
generally argued that the Z4 symmetry and Z6 symmetry
of the lattice is crucial to the stability of the quadratic
band touching.
Effect of gauge fluctuations: The spinons are coupled

to a U(1) gauge field aµΓ45. The gauge field Lagrangian
is renormalized by the fermion loop, which generates a
mass gap for a0, thus a0 can be ignored hereafter. The
same fermion loop will also renormalize the dynamics of
the transverse component of gauge field aT to be:

L1 =
∑

ω,~q

(

c|ω|+
q2

e2ω,~q
+ c1

√

ω2 + v2q2

)

|aTω,~q|
2,

e2ω,~q ∼
e2

1 + c2e2 log
(

Λ2

4ω2+q4

) . (13)

In Lagrangian L1, the first two terms come from the
screening of spinons at the quadratic band touching,
while the third term comes from the Dirac points. At
low energy, the gauge field therefore obeys z = 1 scal-
ing with ω ∼ q, so that the q2/e2 term is negligible in
Eq. (13). For this reason, the gauge field decouples from
η (which has z = 2 scaling) at low energy, but remains
strongly coupled to the z = 1 Dirac fermion ψ.
Thermodynamic and transport properties: The finite

density of states of the η spinon leads to a constant γ =
Cv/T at zero temperature. In terms of η, the spin density
Sz is represented as

∑

i

Szi =
∑

α,a,i

η†iσ
zλyηi. (14)

Since the spin density commutes with the mean field
Hamiltonian Eq. 9, turning on an external magnetic field
creates a Fermi surface of η and ψ, and since the den-
sity of states is finite at the quadratic band touching, the

spin susceptibility saturates to a constant at zero temper-
ature. Thus this spin liquid phase is consistent with the
scaling of specific heat and spin susceptibility observed
experimentally.
We also find a unique scaling of thermal conductivity.

The thermal conductivity is proportional to the specific
heat and the velocity of entropy carriers of the system:
κ ∼ cvl, where l is the mean free path. Since the spinon
has quadratic band touching, at low temperature the av-
erage velocity scales as v ∼ T 1/2, thus the thermal con-
ductivity scales as κ ∼ T 3/2. Note that the thermal con-
ductivity contribution from the Dirac fermion and gauge
field scales as T 2, and is thus subdominant.
Fluctuating orders: The gauge invariant fermion bilin-

ear operators can be viewed as physical order parame-
ters with power-law correlations. They can be classified
according to their transformations under symmetry and
gauge symmetry. Some of the fermion bilinears are sum-
marized as follows:

(1) Spin density wave

~S~r = cos( ~Q · ~r)~n1 + sin( ~Q · ~r)~n2,

~n1 + i~n2 ∼ a1ψ
† ~Sψ∗ + b1η

t~Sψ,

(2) Spin−Nematic :

~d ∼ a2η
t~SΓ3η + b2ψ

† ~SΓ3ψ,

(3) Nematic :

N =
∑

ê

~Si · ~Si+ê(ex + iey)
2

N = N1 + iN2

∼ a3(η
tΓ13η + iηtΓ23η) + b3(ψ

†Γ13ψ + iψ†Γ23ψ);

(4) Spin− chirality :

C =
∑

ijk∈△

~Si · (~Sj × ~Sk) + · · ·

C ∼ a4η
tΓ12η + b4ψ

†Γ12ψ, (15)

where ~S = (σxλy, σy, σzλy) are the spin matrices.
Several of these orders are germane to spin-one tri-

angular antiferromagnets. The spin density wave or-
der parameter is precisely that which describes the clas-
sical 120◦ planar spin state, with ~Q = (4π/3, 0) co-
inciding with the Brillouin zone corner. As a conse-
quence the spin structure factor of this state is singular
at this momentum. Spin nematic order occurs naturally
when biquadratic interactions are present in spin one
systems.[11] In fact, ~d changes sign under the Z2 gauge
transformation η → Γ4η, so it is a headless nematic direc-
tor. The physical order parameter is actually a bilinear
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a b

FIG. 1: a, The spin liquid we are considering contains a

quadratic band touching at ~k = 0 (hexagon), and Dirac points
(squares) at the corners of the Brillouin zone. b, with a
nonzero and small nematic order N1 > 0, the quadratic band
touching is split into two Dirac points, and the locations of
the other Dirac points are shifted.

of ~d, which corresponds to the ferro-quadrupoletensor

Qµν =
1

2
〈Ŝµi Ŝ

ν
i + Ŝνi Ŝ

µ
i 〉 −

2

3
δµν = dµdν −

|~d|2

3
δµν .(16)

Spatial nematic order, in which lattice rotation symmetry
is broken but time-reversal and spin symmetry are pre-
served, is described by N1 andN2. Order of this type was
suggested for S=1 triangular antiferromagnets in Ref.[9],
but also can be realized by spontaneous formation of Hal-
dane chains. The spin-chirality order parameter C is less
obvious from a microscopic perspective, but is a fluctu-
ating order for this QSL state.
At the mean field level, the equal time correlation

of spin chirality, nematic, and spin density wave order
parameters all fall off as 1/r4; the correlation of spin
quadrupole order parameter falls off as 1/r8. The U(1)
gauge fluctuation will modify the scaling dimension of the
order parameters, and its correction can be calculated
systematically using a 1/N expansion. We will leave this
calculation to future studies.
Potential instabilities: One potential instability of this

spin liquid state is instanton proliferation of the compact
U(1) gauge field[29]. However, due to screening by the
gapless fermions, the instantons are greatly suppressed.
By analogy with the theory of the algebraic spin liquid
[30] (in which the z = 1 gauge field is similarly strongly
coupled to Dirac fermions), we expect the spin liquid
phase here to be similarly stable in principle.
Furthermore, the mean field Hamiltonian Eq. 9 is sub-

ject to perturbations such as four-fermion interactions,
which are marginal perturbations at the quadratic band
touching. These four-fermion interactions can modify the
correlation functions of the order parameters discussed
above. The renormalization group may lead to weak
run-away flow of these four-fermion interactions, which
eventually can break the symmetry of the system, and
develop one of the orders in Eq. 15.
If one of these orders develops, it can completely or

partially gap the fermions and introduce interesting ef-
fects. Nonzero spin nematic order, ~d 6= 0, gaps out the
quadratic band touching and Dirac fermion ψ. Depend-
ing on the sign of a2 and b2, a nonzero ~d drives the mean
field band structure of spinon into either a quantum spin
Hall type of topological insulator or a topologically trivial
insulator. If the system is in a quantum spin Hall topo-
logical insulator, assuming ~d is ordered along ẑ direction,
the quantized flux of U(1) gauge field aµΓ45 would carry
spin Sz, which is a conserved quantity. Usually the in-
stanton of a 2+1d compact U(1) gauge field will gap out
the photon excitation [29]. However, in this case since
the quantized gauge flux carries conserved spin, it will
suppress the instanton of the compact U(1) gauge field
aµ, thus aµ is in its photon phase (a similar physics was
discussed in Ref. [31]). Since the 2+1d photon phase of
the U(1) gauge field is the condensate of gauge flux, the
U(1) spin rotation around ẑ axis is spontaneously broken
in the photon phase, thus eventually the spin SU(2) sym-
metry is broken down to a discrete subgroup i.e. there
are in total three Goldstone modes instead of two. If
the spinon band insulator has trivial topology, then the
system is in an ordinary ferro-quadrupolar phase as dis-
cussed in Ref. [9, 10].
Weak spatial nematic order does not open a gap

but only splits the quadratic band touching into Dirac
fermions at two different momenta (Fig. 1); the original
Dirac fermions ψ also shift. When the nematic order
magnitude is very strong, above some critical value, all
the Dirac fermions meet and annihilate in pairs, and the
spinons become fully gapped.
Spin chirality order, which breaks time-reversal and

reflection symmetries, gaps out both the quadratic band
touching and the Dirac points. Depending on the sign
of a4 and b4, a nonzero spin chirality order can drive the
spinons into a topological Chern insulator, or a topolog-
ically trivial band insulator with the same symmetry. In
the former case, one obtains a chiral spin liquid, in which
the U(1) gauge field aµΓ45 acquires a Chern-Simons term
after integrating out the fermions. In the topologically
trivial band insulator, the U(1) gauge field will become
confined by instanton proliferation.
Other phases: For S = 1 spins, we may also consider

another state with ∆
(m)
1 and ∆

(m)
2 both nonzero, and

|∆
(m)
1 | 6= |∆

(m)
2 |. In this case, the spinons have two dif-

ferent bands both with quadratic band touching at ~k = 0,
but they have different band curvature:

H ∼ ηt{(∂2x − ∂2y)(AΓ13 +BΓ25)

+ 2∂x∂y(AΓ23 −BΓ15)}η. (17)

A and B are two linear combinations of pairing ampli-
tudes on nearest and 2nd neighbor links. In this state,
the gauge symmetry is broken down to Z4:

ηi → Qiηi, Qi ∈ {±1, ±Γ4}. (18)
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The Z4 gauge field has a deconfined phase in 2+1 dimen-
sion, and this state is thus clearly locally stable. It also
exhibits non-zero finite spin susceptibility and γ = Cv/T
at zero temperature.
It was shown in material Ba3NiSb2O9 that under mag-

netic field γ is still a constant at low temperature [14].
An external magnetic field will induce a small Fermi
surface for both the U(1)×Z2 state and the Z4 state.
With a Fermi surface, the U(1) gauge field will acquire
a standard |ω|/q term in its action, which leads to a
z = 3 gapless dispersion, while the Z4 gauge field is still
gapped. Thus the current experimental observations are
more consistent with the Z4 state.
A similar d + id state with quadratic band touching

can also be considered for spin-1/2 systems on the tri-
angular lattice. The same mean field Hamiltonian as
Eq. 9 applied, but without an orbital index. This state
remains time-reversal and reflection invariant, and has
Z2 gauge structure. One might consider this as a can-
didate state for the spin liquids observed in the com-
pounds κ−(ET)2Cu2(CN)3, EtMe3Sb[Pd(dmit)2]2, and
Ba3CuSb2O9 [2–6, 32].
Summary and future work: In this work we devel-

oped a new theory of spin liquid for spin-1 quantum
magnet, using this theory we proposed two candidate
states for the recently discovered material Ba3NiSb2O9.
In Ref. [22, 33], a variational Monte Carlo computa-
tion based on the Gutzwiller projected wavefunction for
S = 1/2 was used to compare the energy of various mean
field spin liquid states. Extension of this method to our
generalized S = 1 projected wavefunction, Eq. 7, is a
non-trivial and interesting problem for the future.
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