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We develop a theory for a generic instability of a Fermi liquid in dimension d > 1 against the
formation of a Luttinger-liquid-like state. The density of states at the Fermi level is the order param-
eter for the ensuing quantum phase transition, which is driven by the effective interaction strength.
A scaling theory in conjunction with an effective field theoy for clean electrons is used to obtain the
critical behavior of observables. In the Fermi-liquid phase the order-parameter susceptibility, which
is measurable by tunneling, is predicted to diverge for 1 < d < 3.
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Landau’s Fermi-liquid theory provides a very success-
ful paradigm in condensed matter physics. By map-
ping the low-lying excitations in interacting Fermi sys-
tems onto those of noninteracting ones [1] it explains
many properties of electrons in solids, including the lin-
ear temperature (T ) dependence of the specific heat, and
the quadratic T -dependence of the electrical resistivity
[2]. In a renormalization-group (RG) context it can be
understood as the scaling behavior near a stable fixed
point (FP) that governs the low-T behavior of the system
[3]. Because of this success, deviations from Fermi-liquid
(FL) behavior have attracted considerable attention [4].
Examples include parts of the normal phase of high-Tc
superconductors [5], heavy-fermion systems [6], and the
paramagnetic phase of the helimagnet MnSi at low T [7].

There are different sources for non-Fermi-liquid (NFL)
behavior. One is the vicinity of a quantum critical point.
Another is the existence of Goldstone modes due to a
spontaneously broken symmetry and resulting long-range
order. The coupling of electrons to critical soft modes
and Goldstone modes has been proposed to explain the
behavior of heavy-fermion systems [6] and MnSi [8], re-
spectively. More generic mechanisms for NFL behavior,
that do not rely on underlying long-range order, are hard
to find. In one-dimensional (1-d) fermion systems an ar-
bitrarily small repulsive interaction amplitude Ks (we
will restrict ourselves to a point-like interaction in the
spin-singlet particle-hole channel [9]) leads to an insta-
bility of the FL against a Luttinger liquid (LL) that has
a vanishing density of states (DOS) at the Fermi level and
is characterized by sound-like excitations [10]. A natu-
ral question is whether in dimensions d > 1 a similar
instability will occur for Ks greater than some Kc

s > 0.
Despite substantial efforts, to date no description of such
an instability has been found.
There are, however, indications that an instability ex-

ists. Perturbation theory in the FL phase yields non-
analytic dependencies on T , or the wave number k, for,
e.g., the spin susceptibility and the specific heat coeffi-
cient [11–13]. For generic d they take the form T d−1 or

kd−1, with multiplicative logarithms in odd d. For d = 1,
the logarithmic divergencies coincide with the perturba-
tive signatures of the LL [14]. This is reminiscent of
disordered electrons, where perturbation theory gener-
ically yields a T (d−2)/2 or kd−2 behavior, which turns
into logT or log k in d = 2. These perturbative “weak-
localization” effects signalize the instability of the disor-
dered FL against an Anderson or Anderson-Mott insula-
tor [15, 16]. In d = 2 this instability occurs at arbitrarily
small values of the disorder, whereas in d > 2 a metal-
insulator transition occurs at a nonzero critical value of
the disorder. It is thus natural to speculate that a tran-
sition from a FL to a LL can occur in d > 1.
In this Letter we construct a theory that describes a

quantum phase transition from a FL to a NFL state with
a vanishing DOS at the Fermi level in d > 1. The DOS
serves as the order parameter (OP) for the transition;
the FL is the ordered phase. d−c = 1 is the lower criti-
cal dimension for the transition; fluctuations destroy the
ordered phase for d ≤ d−c . For d = 1+ ǫ (ǫ≪ 1) the the-
ory is controlled and the critical value of the interaction
strength is Kc

s = O(ǫ1/2). For larger d the critical be-
havior is obtained from scaling considerations. In many
respects our theory is analogous to the nonlinear sigma-
model for the classical Heisenberg transition near d = 2
[17], and to the Anderson-Mott metal-insulator transi-
tion of disordered interacting electrons [16, 18], even
though the latter is to a non-standard insulator, while
we describe a transition to a non-standard metal [19].
To identify the DOS as the OP for the FL-to-NFL tran-

sition we consider a Ward identity that reflects the bro-
ken symmetry between retarded and advanced degrees of
freedom in a FL. It relates a two-particle correlation func-
tion F2 (schematically, 〈ψ̄ψ̄ψψ〉, with ψ̄ and ψ fermion
fields; a more explicit expression of F2 will be given in
Eq. (13)) to a single-particle function F1 (〈ψ̄ψ〉) and is
a generalization of a Ward identity first considered for
noninteracting electrons with quenched disorder [20, 21].
With p the center-of-mass wave vector (|p| ≈ kF; kF, ǫF,
and vF denote the Fermi wave number, energy, and ve-
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locity), k the hydrodynamic wave vector (|k| ≡ k ≪ kF),
and me the electron mass it can be written

(iΩn1−n2
+ p · k/me)F2 (p,k; iωn1

, iωn2
)

= F1 (p,k; iωn1
, iωn2

) , (1a)

F1 is proportional to the difference between Green func-
tions taken at the fermionic Matsubara frequencies iωn1

and iωn2
. For iΩn1−n2

= iωn1
− iωn2

→ 0, k → 0, F1

vanishes if ωn1
ωn2

> 0, but is nonzero if ωn1
ωn2

< 0. In
the latter case, and for noninteracting electrons,

F1 (p,k; iωn1
, iωn2

) ∝ i sgn (Ωn1−n2
) δ(ǫp − ǫF), (1b)

with ǫp the single-particle energy-momentum relation.
For ωn1

ωn2
< 0 there thus is a family of 4-fermion func-

tions that diverge in the hydrodynamic limit of vanishing
Ωn1−n2

and k. Taking moments with respect to p yields
an infinite number of soft modes, provided the DOS at
the Fermi level, NF ∝ ∑

p
δ(ǫp − ǫF), is nonzero. In the

presence of quenched disorder, in contrast, only the ze-
roth moment of Eq. (1a) is soft. These soft modes are
the Goldstone modes of a spontaneously broken continu-
ous symmetry, namely, rotations in frequency space that
transform pairs of fermion fields ψ̄ or ψ (more precisely,
pairs of spinors η defined in Eq. (12)) with frequency
labels n1 and n2, respectively, into linear combinations
of the same pair. This symmetry was first discussed by
Schäfer and Wegner [21] in the context of disordered elec-
trons, and elaborated on in Ref. 22. For our current
purposes we have used a generalization of this transfor-
mation to consider phase-space correlation functions, not
only s-wave channel modes as in Ref. 22. If n1 and n2

are both positive or both negative, then the action is in-
variant under these rotations. If n1 and n2 have opposite
signs, then a nonzero DOS spontaneously breaks this in-
variance. The soft modes in question are thus Goldstone
modes; they are not related to a conservation law.
It can be shown that the structure of Eqs. (1) re-

mains unchanged in interacting systems, and that F2 re-
mains soft [23]. This is consistent with what one expects
from FL theory: The symmetry is broken, and Gold-
stone modes exist, as long as the DOS at the Fermi level
is nonzero. The noninteracting DOS, NF, gets replaced
by the physical DOS, N(ǫF), and the prefactor of the
frequency Ωn1−n2

acquires a FL correction. F2 remains
massless, and the frequency continues to scale as a wave
number. Conversely, a vanishing DOS implies that the
symmetry is restored and the Goldstone modes have zero
weight. If this happens, by varying some control param-
eter, then the system will undergo a symmetry-restoring
phase transition from a FL (ordered phase) to a NFL
(disordered phase) with the DOS as the OP. In the FL
the Goldstone modes are all proportional to the basic
Goldstone propagator

D(k, iΩ) = N(ǫF)ϕ(iΩ/vFk)/k. (2a)

The explicit form of the function ϕ depends on the di-
mensionality. In the limiting case d→ 1 one has

ϕ(x) ∝ |x|/(1 + x2). (2b)

These considerations show that in the ordered phase
there are soft modes whose frequency scales as a wave
number, Ω ∼ k: A dynamical exponent z = 1 is asso-
ciated with the stable FL FP. At a symmetry-restoring
transition, described by a critical FP, z 6= 1 in general.
The Goldstone modes are not related to the density

propagator, which is governed by particle-number conser-
vation. The latter, plus the fact that the thermodynamic
density susceptibility ∂n/∂µ is expected to be uncritical
(see below), implies that in the density propagator one
has Ω ∼ k, or z = 1, at both the FL FP and the crit-
ical FP. This is consistent with the fact that Ω ∼ k at
the stable FP that describes a LL in d = 1 [10]. Hence
there is more than one dynamical exponent: The crit-
ical dynamical exponent z (6= 1 in general), related to
the Goldstone modes, and another dynamical exponent
zc = 1 related to the charge or density dynamics.
The Goldstone modes in the FL phase, and their de-

struction at the critical FP, provide a physical mechanism
for the instability of the FL and the stabilization of a NFL
phase. If the fluctuations described by the Goldstone
modes become strong enough, and their contribution to
the free energy large enough, it is energetically favorable
for the system to undergo a transition to a phase where
the symmetry is restored, the DOS at the Fermi level
vanishes, and the Goldstone modes do not exist. In this
sense the Fermi liquid carries within itself the seeds of its
own destruction.
In what follows, we construct a scaling theory for a

symmetry-restoring FL-to-NFL quantum phase transi-
tion where the DOS vanishes. We have also derived an
effective field theory that allows for an explicit descrip-
tion of such a transition, the most important aspects of
which we will sketch at the end of this Letter.
We start by considering the free energy density f ,

which quite generally satisfies a scaling relation

f(t, T, h) = b−(d+z) f(t b1/ν , T bz, h byh) . (3)

We have assigned scale dimensions [L] = −1 and [T ] = z
to factors of length and temperature, energy, or inverse
time (~ = kB = 1), which yields [f ] = −d−z for the scale
dimension of f [24]. b is the RG length rescaling factor.
h is the field conjugate to the OP, with scale dimension
[h] = yh. t is the dimensional distance from the critical
point, and ν = 1/[t] is the correlation length exponent.
For the OP density N = −(∂f/∂h)/T Eq. (3) implies

N(t, T ) = b−d+zN(t b1/ν , T bz) . (4)

Here we have used the fact that N is the DOS, which
scales as an inverse energy times an inverse volume; hence
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yh = z. At T = 0 and at criticality, respectively, the OP
vanishes as a power law,

N(t, T = 0) ∝ tβ , N(t = 0, T ) ∝ T (d−z)/z . (5)

with β = ν(d − z). The specific heat coefficient γ is
obtained from CV = γ T = −T∂2f/∂T 2. The scaling
behavior of γ is the same as that of the DOS:

γ(t, T ) = b−d+z γ(t b1/ν , T bz), (6)

We next consider the OP susceptibility χ = ∂N/∂h as a
function of t, T , and the wave number k. In general,

χ(t, T ; k) = b2−η χ(t b1/ν , T bz, kb), (7a)

which defines the exponent η. At T = 0 and at criticality,
respectively, the homogeneous OP susceptibility diverges:

χ(t, T = 0, k = 0) ∝ t−γ , γ = ν(2− η),

χ(t = 0, T, k = 0) ∝ T−(2−η)/z. (7b)

From Eqs. (3), (4), and (7a) we find the exponent relation

z = (d− η + 2)/2. (8)

This implies that there are only two independent criti-
cal exponents, e.g., ν and z (see, however, the remark
above regarding multiple exponents z) rather than three
as is generally the case at a quantum critical point
[25]. For ∂n/∂µ we expect no critical behavior since it
does not show the perturbative nonanalyticities that are
precursors of the critical behavior of other observables
[11, 26]. The scaling behavior of the electrical conduc-
tivity σ = Dc ∂n/∂µ is therefore given by that of the
charge diffusion coefficient Dc, which scales as a length
squared divided by a time. Since Dc describes the charge
or density dynamics the relevant dynamical exponent in
this context is zc = 1. We thus have [27]

σ(t, T ) = b2−zc σ(t b1/ν , T bz, T bzc). (9a)

If z < 1 (see below) this yields for the electrical resistivity
ρ = 1/σ at criticality

ρ(t = 0, T ) ∝ T. (9b)

These scaling predictions all pertain to the critical FP.
Also of interest are the OP and the OP susceptibility in
the ordered phase, |t| = ∞, where η = d, which implies
z = 1. From Eq. (4) we have

N(|t| = ∞, T ) ∝ const. + T d−1. (10)

This is one example of the perturbative nonanalyticities
mentioned above. The same power law holds at T = 0
as a function of the distance ω from the Fermi surface:
N(T = 0, ω) ∝ const. + ωd−1. It is analogous to the
Coulomb anomaly in disordered systems, where N(T =

0, ω) ∝ const.+ω(d−2)/2 [28]. The latter is a precursor of
the quantum phase transition in disordered systems (the
Anderson-Mott transition [16]), where the DOS vanishes
and serves as an OP [29]. The current theory suggests
that an analogous statement holds in clean ones. For the
OP susceptibility we find from Eq. (7a)

χ(|t| = ∞, T, k) = kd−2 fχ(T/k) ∝ T/k3−d. (11)

In the second relation we have used the result of an
explicit calculation [30], which yields fχ(x → 0) ∝ x.
This divergence of the OP susceptibility, or the 2-point
local-DOS correlation function, which is observable by
tunneling experiments, is a consequence of the Gold-
stone modes. It is analogous to the 1/k4−d divergence
of the longitudinal susceptibility in the ordered phase of
a Heisenberg ferromagnet [31]. For a 2-d FL it predicts
a 1/k divergence with a prefactor that is linear in T .
The preceding scaling considerations are expected to

be valid between the lower critical dimension d−c = 1
and some upper critical dimension d+c . Equation (11)
suggests d+c = 3, but this requires further corroboration.
For d > d+c one expects the critical behavior to be mean-
field like and governed by a Gaussian FP. An approach
that focuses on the Gaussian fixed point and its stability
will also allow for an ǫ-expansion about d+c which will
complement the current expansion about d−c .
We now sketch the derivation of an effective field the-

ory that allows for an explicit description of a quantum
phase transition of the type we have discussed above. A
complete account will be given elsewhere [30]. This ef-
fective theory is in the spirit of the matrix field theories
that were pioneered by Wegner [21, 32], and generalized
by others [18, 22], for disordered systems. We consider a
fermionic action and define electron bispinors

ηn(x) =
(

ψ̄n↑(x), ψ̄n↓(x), ψn↓(x),−ψn↑(x)
)

/
√
2 (12)

where ψ̄ and ψ are fermionic fields with Matsubara fre-
quency indexN and spin projection ↑↓, as well as adjoints
η+n (x) = Cηn(x) with C = iσ1⊗σ2, where σ1,2 are Pauli
matrices. We confine the tensor product η+n (x)⊗ηm(y) to
a spin-quaternion-valued bosonic matrix field Qnm(x,y)
by means of a Lagrange multiplier Λnm(x,y). The Ward
identity then takes the form of Eqs. (1) with

F2(p,k; iωn1
, iωn2

) = 〈trQn2n1
(p+ k/2,p− k/2)

×trQn1n2
(p− k/2,p+ k/2)〉 (13)

where ωn1
ωn2

< 0. This identifies qnm(p1,p2) ≡
Θ(−nm)Qnm(p1,p2) as the Goldstone modes. The cor-
responding elements λ of the Lagrange multiplier field
Λ are also soft modes. The electron-electron interaction
couples q to Pnm(p1,p2) ≡ Θ(nm)Qnm(p1,p2), and in-
tegrating out P , and the corresponding part of Λ, gen-
erates terms to all orders in q and λ. An analogous pro-
cedure in the presence of quenched disorder provides a
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perturbative derivation, order by order in powers of q, of
the generalized nonlinear sigma-model for the Anderson-
Mott transition problem [16, 18]. We have derived the
action to order q4, which suffices for a 1-loop calculation.
The effects of λ can be absorbed into diagram rules.
This effective theory can be analyzed by RG methods

in d = 1 + ǫ by means of a systematic loop expansion
in analogy to the disordered case in d = 2 + ǫ [16]. The
1-point function is proportional to the DOS:

P (1) = 〈trQnn(x,x)〉
∣

∣

iωn→i0
∝ N(ǫF) ≡ NF Z

1/2. (14)

Physically, Z1/2 = (1 + δZ)1/2 is the physical DOS nor-
malized by the bare or free-electron DOS; technically, it
is the field-renormalization constant. It is related to, but
not the same as, the residue of the pole in the Green
function. We have performed a 1-loop calculation and
have found that δZ is negative, logarithmically divergent
in d = 1, and proportional to 1/ǫ in d = 1 + ǫ. As a
function of Ks it is of O(K2

s ) for small Ks. In a naive
extrapolation the DOS thus vanishes at a critical value
Kc

s = O(ǫ1/2). The 2-point function

P (2) = 〈qn1n2
(k1,k2) qn3n4

(k3,k4)〉 (15a)

has a contribution proportional to δn1n3
δn2n4

that con-
stitutes the Goldstone propagator D, Eqs. (2). In d = 1

D(k, iΩ) = Z H |Ω|/(k2/G2 +H2Ω2). (15b)

The bare values of G (which is the loop expansion pa-
rameter) and H are 1/vFNF and NF, respectively. Our
explicit calculation has found that G and H are not sin-
gularly renormalized at 1-loop order. We have performed
a structural analysis of the loop expansion which confirms
this and shows that at 2-loop order there is a singular
renormalization of G due to insertion diagrams; an in-
spection of skeleton diagrams will require a full 2-loop
calculation. This strongly suggests a critical FP at 2-
loop order with a FP value of the renormalized coupling
constant g = bǫG given by g∗ = O(ǫ1/2). Choosing the
independent exponents to be ν and z this leads to

ν = 1/2ǫ+O(1) , z = 1 +O(ǫ). (16)

The O(ǫ) term in z requires a 2-loop calculation; an ed-
ucated guess is as follows. In the bare theory, G2H ∝
me/n, with n the electron density. This quantity one
does not expect to be renormalized, so H ∼ G−2 ∼ b−2ǫ,
or z = 1− ǫ [33]. Hence z < zc, which implies Eq. (9b).
In summary, we have described a FL-to-NFL transition

that is characterized by a vanishing DOS at the Fermi
level. Promising systems to observe such a transition are
optical lattices where the interaction strength between
the fermions can by tuned. Pseudogap phases observed
in optical lattices [34] and high-Tc superconductors [35]
may be manifestations of the physics discussed above.
This notion requires further investigation. For instance,

it would be very interesting to look experimentally for
the precursor effect in a FL described by Eqs. (10, 11).
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[31] E. Brézin and D. J. Wallace, Phys. Rev. B 7, 1967 (1973).
[32] F. Wegner, Z. Phys. B 35, 207 (1979).
[33] An argument given by J. Cardy, Scaling and Renor-

malization in Statistical Physics (Cambridge University
Press, Cambridge, 1996), Sec. 6.5, adapted to the cur-
rent problem, suggests β = O(1/

√
ǫ), or z = 1−O(

√
ǫ).

An explicit 2-loop calculation is needed to distinguish be-
tween these scaling scenarios. In either case z < zc = 1,
which is one of the assumptions that yield Eq. (9b).

[34] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, and
I. Carusotto, Phys. Rev. Lett. 98, 240402 (2007).

[35] H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi,
M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki,
and J. Giapintzakis, Nature 382, 51 (1996).


