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Abstract

We present an experimental study of a confined nanoflow, which is generated by a sphere oscil-

lating in the proximity of a flat solid wall in a simple fluid. Varying the oscillation frequency, the

confining length scale and the fluid mean free path over a broad range provides a detailed map

of the flow. We use this experimental map to construct a scaling function, which describes the

nanoflow in the entire parameter space, including both the hydrodynamic and the kinetic regimes.

Our scaling function unifies previous theories based on the slip boundary condition and the effective

viscosity.
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In micron and nanometer scale flows [1, 2], the characteristic dynamic length scale L of the

flow approaches and is even exceeded by the mean free path of the fluid λ. This limit is clearly

beyond the applicability of the Navier-Stokes equations, requiring a rigorous treatment using

kinetic theory. A less rigorous but widely used approach to describe these small scale flows

is to extend the Newtonian description by imposing a slip boundary condition on solid

walls. This approach is justified as follows. Derivation of the Navier-Stokes equations from

kinetic theory results in the appearance of a Knudsen layer of thickness λ near the wall [3].

Because a fluid element of linear dimension ∼ λ is treated as a mathematical point in the

hydrodynamic approximation, the velocity at the wall becomes uw ≈ λ du
dz

∣

∣

z=0
, with u being

the hydrodynamic velocity (assumed parallel to the wall) and ẑ being the wall normal. Thus,

the slip length b, where b ∼ λ, is applied as a convenient empirical parameter to extend the

Navier-Stokes equations into the kinetic regime. As required by macroscopic hydrodynamics,

b becomes negligible when the Knudsen number, Kn ≡ λ
L
, is small, i.e., Kn ≪ 1.

The above approach comes with some problems. To describe some gas flows, for instance,

unphysical slip lengths, b ≫ λ, may be required. To alleviate this problem, one can assume

specular reflections of the gas molecules from the wall. Yet, experiments show that this

assumption is not very accurate for heavier gases and untreated surfaces [4, 5]. Worse is the

problem when the Navier-Stokes solution (with the slip boundary condition) fails to con-

verge with the prediction of the kinetic theory. A good example to the point is oscillating

nanoflows [6–8]. Efforts to describe oscillating nanoflows using the Navier-Stokes equations

in conjunction with a slip length agree with experiments only in a range of relevant param-

eters [9]. A proper kinetic treatment of the problem [10] shows why: the finite relaxation

time τ of the fluid modifies the physics of the flow, resulting in the “telegrapher’s equation”,

which is substantially different from the Navier-Stokes equations.

In this manuscript, we turn our attention to nanometer scale confined flows in the limit

h <
∼ λ, where h is the confining length scale. So far, a group of researchers have extended

Reynolds’ hydrodynamic formulation [11, 12] to small scales by imposing the slip boundary

condition [13–17] — as described above. Others, coming from kinetic theory, have developed

the concept of the effective viscosity, which typically depends upon a properly defined Knud-

sen number [18, 19]. There is no question that both approaches must agree for the same

flow parameter space. Here, we present an experimental study of nanometer scale confined

flows covering a broad range of parameters — including gap h, pressure p, and frequency
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FIG. 1. (a) Measured (symbols) and simulated (inset and solid lines) mechanical modes of the

sphere-cantilever device. In the first harmonic mode (blue), FEM simulations suggest that the

node appears at the position where the sphere is attached to the cantilever and that the sphere

undergoes small rotational oscillations about an axis (parallel to the y-axis) through the node.

(b) Measured dimensionless dissipation 1/Qm as a function of gap h, obtained from the driven

frequency response, and thermal oscillations of the device. (c) Dimensionless fluidic dissipation

1/Qf as a function of gap h at fixed pressures p. Solid line segments show asymptotic values

1/Qf∞ from viscous theory. Inset is a semi-logarithmic plot of the same data. The h error bars

for h ≤ 200 nm are due to roughness and contact uncertainty. Otherwise, the error comes from

the linear stage. The error bars in 1/Qf are smaller than the symbol sizes. (d) 1/Qf measured as

a function of pressure p with the gap fixed. Solid line is from viscous theory and the dotted line is

from molecular theory. All data in this figure are obtained from device C1.

ω
2π

— along with a scaling theory. Our scaling function describes the physical behavior of

the flow in the entire parameter space, capturing the transition from hydrodynamics to the

kinetic regime accurately.

We study the oscillatory hydrodynamic response of a sphere in the proximity of a solid

surface. Our experimental device is a micron-scale silica sphere with radius R glued to

the end of a microcantilever of linear dimensions l × w × t. We have employed both the

fundamental and first harmonic flexural modes of a soft cantilever (C1), and the fundamental

flexural mode of a shorter stiffer cantilever (C2). Figure 1(a) depicts optical measurements

and finite element method (FEM) simulations of the mechanical modes of C1. For each
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device and mode, we first extract the the intrinsic quality factor Qi and resonance frequency

ωi

2π
in UHV away from any surfaces. The modal mass me is determined from the resonance

frequency shifts before and after the sphere is attached to the cantilever. These parameters

are listed in Table I.

Once the mechanical mode is characterized, we change the flow parameters while optically

monitoring the dissipation and the resonance frequency of the mode. In particular, we

continuously vary two parameters for each mode as follows. i) We change the gap h (shortest

distance) between the sphere and a flat solid (Silicon) surface. At small gaps (h ≤ 200 nm),

we drive the cantilever to achieve ‘intermittent contact’ between the sphere and the solid, and

determine the gap from the amplitude. For large gaps, h is extracted from a calibrated linear

motion stage. ii) We vary the surrounding pressure p by admitting dry N2 into the chamber.

These provide a two-dimensional parametric map of the dimensionless dissipation and the

(angular) resonance frequency: Qm
−1 = Qm

−1(h, p) and ωm = ωm(h, p). Before presenting

the data, we show in Fig. 1(b) that 1/Qm measured by linearly driving the resonator and

by monitoring its thermal fluctuations agree closely, with a typical discrepancy less than

1%. The maximum amplitudes in driven and thermal measurements remain ∼ 1 nm and

∼ 0.01 nm, respectively. By properly subtracting the intrinsic dissipation from the measured

dissipation, one can obtain the fluidic dissipation: 1/Qf = 1/Qm − 1/Qi. Figure 1(c) and

(d) show the Qf
−1 = Qf

−1(h, p) data set for the 13.7 kHz mode in double-logarithmic plots

against gap h and pressure p, respectively. In Fig. 1(c), the gap is varied in the range 10−8 m

≤ h ≤ 10−4 m with the pressure held at p = 100, 300 and 1000 Torr. Conversely, in Fig.

1(d), the pressure is swept continuously in the range 10−2 Torr ≤ p ≤ 103 Torr, while the

gap is fixed at h = 0.1, 0.2, 1 and 20 µm. The inset in Fig. 1(c) is a semi-logarithmic plot,

showing the characteristic saturation of Qf
−1 vs. h (see discussion on 1/Qf∞ below). The

accompanying mode frequency, ωm = ωm(h, p), show very little variation (less than 0.1%)

in this parameter space.

Several important preliminary observations can be made from the data of Fig. 1(c) and

(d). For a sphere oscillating at frequency ω
2π

in an unbounded fluid at the viscous limit

ωτ ≪ 1 [6, 10], the dimensionless dissipation can be written as [20]

1

Qf∞
=

6πµR

mω

(

1 +
R

δ

)

, (1)

where R is the radius and m is the mass of the sphere, µ is the dynamic viscosity of the
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FIG. 2. Gap dependent dimensionless dissipation 1/Qh as a function of gap h at fixed pressure.

(a), (b) Fundamental modes of devices C1 and C2, respectively. (c) First harmonic mode of device

C1. Solid lines in (a)-(c) are fits to Eq. (7) with α = 0.5 and β = 1.6, multiplied by a fitting

factor of C ≈ 0.23± 0.11. The deviation from the solid line in (c) is possibly due to the additional

rotational motion of the sphere. The dashed line in (c) is the improved fit with the added rotational

dissipation [24]. The noise in all the data in (a)-(c) increases for h ≥ 104 nm due to the subtraction

of 1/Qf∞. The representative error bars are found by an analysis of the noise at the tails (h ≥ 104)

and become smaller than symbols for h <
∼ 103 nm.

fluid, and δ =
√

2µ
ρω

is the viscous boundary layer thickness. µ = ρν, where ρ is the density

and ν is the kinematic viscosity of the fluid. The fluidic dissipation from the rectangular

cantilever can also be found, albeit numerically [21]. The solid line segments in Fig. 1(c)

and the solid curve in Fig. 1(d) show the 1/Qf∞ predictions of viscous theory at large gaps,

h → ∞. In these calculations, the independent contributions to dissipation from the sphere

and the cantilever are simply added. The velocity field of an oscillating sphere-cantilever

system should be different from that obtained by adding the individual velocity fields of a

sphere and a cantilever. Regardless, the agreement between experiment and calculations in

Fig 1(c) and (d) is satisfactory [22]. In Fig. 1 (d), the prediction of molecular theory [9] is

also shown.

When a wall is placed in the proximity of an oscillating sphere, the entire velocity field

(not just the field in the gap) will be modified substantially. Regardless, the dissipation

caused by the squeezing of fluid in the gap can be conveniently studied by subtracting the

dissipation in an infinite fluid, i.e., 1/Qh = 1/Qf − 1/Qf∞. Subtracting the experimental h-
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TABLE I. Mechanical properties of the measured devices.

Device Mode l × w × t R ωi

2π Qi me

(µm) (µm) (kHz) (kg)

C1 1 230× 40× 3 35 13.7 12×103 5×10−10

C1 2 230× 40× 3 35 45.8 3.4×103 16×10−10

C2 1 125× 35× 4 21.5 122.4 6.8×103 1×10−10

independent 1/Qf∞ asymptotes in Fig. 1(c) from the 1/Qf data results in the dimensionless

gap-dependent dissipation 1/Qh in Fig. 2(a). Figure 2 depicts similarly-obtained 1/Qh for

three different modes at multiple pressures as the gap is varied. Solid lines are fits to theory

(see below). A first pass analysis of the data can be provided based upon the dimensionless

Knudsen number, Knh ≡ λ
h
. When Knh ≪ 1, 1/Qh ∝ 1/h and can be approximated as

[23–25]:

1

Qh

=
6πµR

mω
×

R

h
. (2)

At the opposite limit of Knh ≫ 1, the dimensionless dissipation saturates. Between these

two limits, there is a well-defined transition from the hydrodynamic to the kinetic regime.

We now provide a theoretical background for the observed transition. Since 1/Qh → 0

as h → ∞, we can write a general relation

1

Qh
=

6πµR

mω
×

R

h
× f

(

λ

h
,
λ

δ
,
λ

R
, ...,

R

δ

)

. (3)

The scaling function f({xi}), which is analytic in the limit {xi} → 0, depends on various

dimensionless variables pertaining to different dynamic regimes. It is clear that the first few

{xi} are the familiar Knudsen numbers based on appropriate linear dimensions characterizing

the system: Knh = λ
h
, Knδ = λ

δ
, KnR = λ

R
and so on. The last dimensionless variable,

R
δ
= R

√

ω
2ν

=
√

UR
ν

= Reδ, can be regarded as a Reynolds number based on the velocity

U = ωR/2. In the limit Kni → 0 and Reδ → 0, Taylor expansion gives

1

Qh
=

6πµR

mω
×

R

h
×
(

1 + f (1) + f (2) + ...
)

, (4)

where

f (1) = a
(1)
h Knh + a

(1)
δ Knδ + ...+ a

(1)
ReReδ (5)
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f (2) = a
(2)
h Knh

2 + a
(2)
δ Knδ

2 + ...+ a
(2)
ReReδ

2

+a
(2)
h,δKnhKnδ + a

(2)
h,ReKnhReδ + ... (6)

The relative magnitudes of the a
(n)
i and the dimensionless parameters {xi} determine the

physics of the flow. By varying {xi} over a broad range, one can extract the magnitudes of

a
(n)
i from experiment.

To gain more insight into the proposed expansion in Eq. (4), let us consider the limits.

When h → ∞ (Knh → 0), dimensionless dissipation due to squeezing disappears, 1/Qh → 0.

This suggests that the first order term in the Taylor expansion in Eq. (5) should not strongly

depend on the other Knudsen numbers, Knδ, KnR and so on. In the limit of small h

(Knh ≫ 1), momentum transfer is dominated by the ballistic impact of the molecules emitted

from the stationary plate incident on the moving sphere. The contribution of intermolecular

collisions can be neglected. If the thermal molecular velocity uth is large, the dimension of

the gap h must disappear from the expression for dissipation.

Keeping a finite number of terms in Eq. (4), one can only hope to find an approximation

for the scaling function f({xi}) valid in the limit xi → 0. To obtain an expression valid

in the entire range of {xi} variation, one has to keep infinitely many terms. This can be

achieved by recasting the scaling function in Eq. (3) into a ratio of low-order polynomials

with unknown coefficients to be determined experimentally. The resulting expression

1

Qh
=

6πµR

mω
×

R

h
×

1

1 + αλ
h

(

1 + βR
δ

) (7)

can be perceived as the simplest Padé approximant, which should describe experiments in

a broad parameter range. The constants α and β are related to a
(n)
i . It is interesting to

note that, in this choice, the term of linear order O(Reδ) disappears due to the subtraction,

1/Qh = 1/Qf − 1/Qf∞. However, the higher order term O(KnhReδ) survives. In the small-

gap limit Knh = λ
h
≫ 1, one obtains as prescribed

1

Qh
∼

6πρuthR
2

mωα
(

1 + βR
δ

) . (8)

Returning to Fig. 2, we now describe how the fits to the experimental data are obtained

based upon the above scaling form. The device parameters m = me, ω, and R are exper-

imental constants. The fluid parameters are all assumed to be independent of h, but may

depend on p: λ ∝ p−1, δ ∝ p−1/2, and µ is independent of p. The very same constants
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α and β in the scaling function in Eq. (7) must uniquely fit all data sets — regardless of

pressure, frequency, mode and so on. Indeed, we can fit all our data with α = 0.5 and

β = 1.6, found by iteration. Any small changes in α and β cause the curves in Fig. 2 to

shift along the h-axis, making the fits unacceptable. The fits can be improved along the

1/Qh-axis by multiplying with fitting factors of C ≈ 0.33, 0.20 and 0.16 for the 13.7 kHz,

122.4 kHz and the 45.8 kHz modes, respectively, resulting in the solid curves in Fig. 2. To

within our experimental accuracy, however, C remains a constant as C ≈ 0.23± 0.11 for all

our devices, and may be needed due to non-idealities in geometry (e.g., the cantilever and

epoxy above the sphere), inaccuracies in determining me (especially for the first harmonic

mode) and deviations from normal relative motion (see below). Deeper physical factors —

such as the non-trivial effects of the subtraction of the 1/Qf∞ tails and unsteady corrections

to Eq. (2)— cannot be ruled out, and may give rise to the small deviations in C from device

to device.

The fit in Fig. 2(c) (solid curve) deviates from the data for 102 nm <
∼ h <

∼ 5 × 104 nm.

FEM simulations for this mode suggest that the sphere undergoes rotational motion — with

the displacement of its closest point to the wall being in the direction 0.98x̂ + 0.2ẑ [see

Fig. 1(a)]. Then, the dissipation comes from shearing the fluid in the gap as well as from

squeezing it. For shear, 1
Qh

= 48πµR
15mω

× ln
(

R
h

)

[24] as opposed to the expression in Eq. (2) for

squeezing. The dashed line in Fig. 2(c) is the fit found by näıvely adding these two forms

in the ratio of the FEM motional amplitudes, and by keeping the scaling function exactly

the same. Because the effect remains small, the 1/h dependence of the dissipation can be

assumed prevalent for all devices considered here and in the literature.

Having fit individual data traces, we can collapse all our data as shown in Fig. 3. The

collapse is obtained by removing the trivial effects of the device size and frequency from

the data as well as the more profound effects of the scaling function f({xi}). The plot-

ted dimensionless quantity, 1
Qh

× mω
6πµR

× 1
f
can be regarded as the dimensionless size- and

frequency-independent dissipation, in which the kinetic effects have been deconvoluted. It

therefore shows the hydrodynamic R/h dependence at all length scales studied here.

Finally, our results can be interpreted as follows. In the hydrodynamic limit (h ≫ λ),

this problem is described by Eq. (2), where the viscosity µ is dominated by intermolecular

collisions, µ ∼ ρuthλ, with a relaxation timescale ∼ λ/uth. To gain insight into the kinetic

limit (h ≪ λ), one can simply write the shear stress on the sphere as σ ∼ ρuth

∣

∣

∣
ḣ
∣

∣

∣
. It is
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FIG. 3. Collapse of all experimental data from this work. Here, f is the scaling function defined

in Eq. (7) and the same Cs are used as above.

easy to see that σ ∼ ρuthh
|ḣ|
h

∼ ρuthh
du
dz
, where du

dz
is the velocity gradient. This result can

be interpreted as the appearance of an effective viscosity, µeff ≈ ρuthh, due to an effective

mean free path, λeff ≈ h. Substituting µeff into the hydrodynamic solution simply results

in 1
Qh

∼ ρuthR
2

mω
, consistent with Eq. (8). Thus, in principle, one may justify an attempt to

reach the kinetic regime by using the Navier-Stokes equations, but combined with effective

(and sometimes frequency-dependent) viscosities, slip lengths and so on.

In this manuscript, we have presented experimental data on confined nanoflows covering

a broad range of flow parameters. Our simple scaling theory describes experiments in the

entire parameter range — without explicitly employing an effective viscosity and/or slip

length. To conclude, we stress that the dimensionless Weissenberg numbers here remain

small, Wi = ωτ ≪ 1. Since the appearance of frequency in effective viscosity essentially

leads to a modification of the equations of motion [6, 10], generalization of confined nanoflows

to the interval Wi ≫ 1 will require further experimental and theoretical work.
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