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We show experimentally and numerically that an intrinsic localized mode (ILM) can be stably
produced (and experimentally observed) via subharmonic, spatially homogeneous driving in the
context of a nonlinear electrical lattice. The precise nonlinear spatial response of the system has
been seen to depend on the relative location in frequency between the driver frequency, ωd, and
the bottom of the linear dispersion curve, ω0. If ωd/2 lies just below ω0, then a single ILM can
be generated in a 32-node lattice, whereas when ωd/2 lies within the dispersion band, a spatially
extended waveform resembling a train of ILMs results. To our knowledge, and despite its apparently
broad relevance, such an experimental observation of subharmonically driven ILMs has not been
previously reported.

PACS numbers: 63.20.Pw, 63.20.Ry, 05.45.Yv

It is well known that a damped nonlinear oscillator
can respond at its intrinsic resonance frequency when it
is driven at a multiple of that frequency. A direct ex-
ample of such subharmonic driving is provided by the
driven van-der-Pol oscillator, where the ratio of response
to driver frequency is exactly 1/3 [1, 2]. Many other non-
linear oscillators exhibit similar subharmonic resonances
(the Duffing oscillator being another extensively studied
example). In fact, subharmonic response must be seen as
a fairly generic property of nonlinear oscillators. Alterna-
tively, a nonlinear oscillator with a parameter modulated
at a particular frequency can also respond at a fraction
of that frequency in what is called parametric excitation.

What happens when such nonlinear oscillators are con-
nected to one another in a regular lattice? In nonlinear
lattices, an important generic phenomenon is the exis-
tence of self-trapped localized modes, known as intrin-
sic localized modes (ILMs) or discrete breathers. Such
a mode represents an excitation which is (typically ex-
ponentially) spatially localized over a limited range of
lattice nodes and decays to zero far from these, and it is
temporally periodic. In this regard, it can be thought of
as an analogue of the solitons of continuous media. How-
ever, the discreteness of the lattice introduces interesting
variations to the problem, including, for instance, the
fact that ILMs may be dynamically stable in any dimen-
sion. This has made ILMs relevant excitations for a wide
array of applications including superconducting Joseph-
son junctions [3], photonic crystals [4], biopolymers [5],
charge-transfer solids [6], antiferromagnets [7], and mi-
cromechanical cantilever arrays [8], among others [9].

Here, we blend these two broadly significant aspects
of nonlinear systems by addressing the question: can
subharmonic or parametric excitations, which figure so
prominently in isolated nonlinear oscillators, carry over
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FIG. 1: Left: Schematic circuit diagram of the electrical
transmission line. Right: Schematic of a single element.

to the lattice setting? That is, we examine whether ILMs
can be generated and, especially, stabilized by subhar-
monic and/or parametric driving which is homogeneous
in space. So far, this type of question seems to have been
considered chiefly in the context of continuous media [10],
or for parametric driving [11–13], and has been princi-
pally theoretical in nature. In this paper, we demon-
strate experimentally and corroborate through theoretical

modeling and numerical computation, and when possible
infusing analytical insights, that ILMs can indeed be gen-
erated and stabilized via subharmonic forcing.

The experimental system, shown in Fig. 1, is the bi-
inductance electrical band-pass filter of Refs. [14, 15], and
the basic geometry and coupling to an external driver is
given in Refs. [16–18]. This electrical lattice becomes
nonlinear by virtue of a diode (np-junction) replacing
a traditional capacitor in the unit cell. The voltage at
each lattice node is monitored at 0.4 µs intervals using
a multi-channel AD converter. The boundary conditions
are periodic, and the main result of subharmonic ILM
generation is realized identically in larger lattices than
the one used. We use ‘flat’, zero voltage and current,
initial conditions along the lattice. Furthermore, since
the driving is homogeneous across the system, this study
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relates to Refs. [6–8], and more generally to nano-scale
(e.g. anti-ferromagnets and charge transfer solids) or even
meso-scale (such as MEMS cantilever arrays or Joseph-
son junctions) applications where external fields appear
homogeneous on the scale of the lattice.
Using basic circuit theory, the single element composed

of the parallel combination of an inductor, L2, and a
diode (driven via a resistor) is approximately described
by [18]:

dv

dτ
=

1

c(v)

[

cos(Ωτ)

β
−

R+Rl

βRl
v + y − iD

]

,

dy

dτ
= −

1

L2

v, (1)

where β ≡ RC0ω0 and the following dimensionless vari-
ables have been used: τ = ω0t, iD = ID/(ω0C0Vd),
v = V/Vd, the dimensionless voltage, c(v) = C(V )/C0,
Ω = ωd/ω0, and ω0 = 1/

√
L2C0; y represents the nor-

malized current through the inductor and C(V ) is the
capacitance of the diode [18]. A phenomenological (and
amplitude-dependent) dissipation resistor, Rl, was in-
cluded in the model to better approximate the experi-
mental diode dynamics.
When N such oscillators are coupled via a second in-

ductor, Eq. (1) generalizes to the lattice equations

c(vn)
dvn
dτ

=
cos(Ωτ)

β
−

R+Rl

βRl
vn + yn − iD(vn),

dyn
dτ

=
L2

L1

(vn+1 + vn−1 − 2vn)− vn. (2)

The inductor L1 is used to couple the unit cells and L2

refers to the inductor to the ground within each oscil-
lator [18]. The ratio of these two inductors yields the
effective “discreteness” of the system; in the limit of L1

much larger (smaller) than L2, the system can be viewed
as approaching the continuum (anti-continuum) limit. In
our lattice, L1=0.68 mH and L2=0.33 mH, so that we are
clearly not in the continuum limit, although the latter
is, in principle, experimentally approachable and mathe-
matically interesting in its own right.
In order to investigate the origin of these subharmonic

breathers, we have to examine in detail the response of
a single unit cell of the electrical lattice (i.e., an effec-
tive anti-continuum limit). As shown in Fig. 2(a), the
response is a typical nonlinear resonance curve, as ex-
pected. However, for a range of frequencies located far
above the linear resonance curve, the attractor of the
system, which oscillates with frequency fd = ωd/2π,
experiences a period-doubling bifurcation and a new,
larger (in amplitude) attractor, appears with f = fd/2
(see curve bifurcating from points A and B in the fig-
ure). Thus, for an interval of frequencies beyond the top
of the linear dispersion curve of the full electrical lat-
tice, two different attractors, one small with a frequency
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FIG. 2: (Color on line) Response of a unit cell at driver am-
plitude of Vd = 8 V (in numerical simulations, we consider a
small frequency shift of 25 kHz to quantitatively compare with
the experimental curves). Top: Nonlinear resonance curves,
where dots (orange [grey]) correspond to experimental data
while the continuous and dashed black lines correspond, re-
spectively, to stable and unstable numerical solutions. Black
circles show period doubling bifurcation points. The inset
zooms in on the subharmonic response where the analytical
approximation is included (blue dash-dotted line), with a fre-
quency shift of 5 kHz. Bottom: Coexisting large and small
attractors corresponding to fd = ωd/2π = 550 kHz obtained
numerically (black lines) and experimentally (red [grey] lines).

f = fd = 550 kHz and another one, large and with a
frequency f = fd/2 = 275 kHz, coexist as illustrated in
Fig. 2(b). When we decrease the voltage amplitude, Vd,
the two bifurcation points (labeled A and B in the figure)
get closer and, for a voltage Vd ≈ 6.4 V in the model, col-
lide and disappear, and no subharmonic resonance takes
place. Experimentally, the cutoff voltage is found around
6.2 V; otherwise the numerical predictions match experi-
mental observations reasonably well, especially given the
model’s phenomenological treatment of the diodes.
Furthermore, in order to obtain an approximate sub-

harmonic solution corresponding to small voltages, we
can (Taylor) approximate Eq. (1) as

ẍ+
RRl

βRl

(

1 + x+ x2
)

ẋ+ x+
x2

2
= −

αΩVd sin(Ωτ)

β
,

where V = (x+x2/2)/α (in Volts), and α is a parameter
related to nonlinear capacitance [19, 20]. Using the har-
monic balance method to approximate a solution of the
subharmonic response [21], such a solution assumes the
form x(t) = A1 sin(T+φ)+A1/2 sin(T/2)+B1/2 cos(T/2),
whereA1 = 1/(1−ω2) andA1/2 and B1/2 can be obtained
by solving two nonlinear algebraic equations (not shown
here). This approximate solution is displayed in the in-
set of Fig. 2(a). We note that this analytical approach
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predicts the range of frequencies where the subharmonic
resonance takes place, and the resulting solutions in the
small amplitude regime.
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FIG. 3: (Color online) Comparison between the theoretical
(solid line) and experimental (markers) ILM profiles, with
frequencies (a) 275 kHz and (b) 295 kHz, generated by a ho-
mogeneous forcing of 7.5 V at (a) 550 kHz and (b) 590 kHz.
The insets show the Floquet multiplier numerical lineariza-
tion spectrum confirming (since all multipliers are inside the
unit circle) the stability of these time-periodic solutions.
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FIG. 4: (color online) (a) Experimental and (b) numerical
traces of the oscillation at four different nodes —the ILM
center, first neighbor, second neighbor, third neighbor. (c)–(f)
The frequency spectrum corresponding to the experimental
time traces.

Let us now turn to the lattice of nonlinear oscillators.
Figure 3 shows the steady-state configurations upon uni-
form driving at frequencies (a) fd = ωd/2π = 550 kHz
and (b) fd = 590 kHz and an amplitude of 7.5 V. Note
that the driver’s frequency is far detuned from the sys-
tem’s linear eigenmodes, so that in the linear case we
would expect no energy transfer from the driver. The
uniform mode frequency (k = 0) at the bottom of the
linear dispersion curve occurs at around 315 kHz; the
top of the dispersion curve (k = π) is at around 520 kHz.
Nevertheless, in this nonlinear system, at around t =

75 µs after the driver is first turned on, energy starts
to build up around the 10th node, and soon we observe
a stable ILM centered there, with its wings expanding
about three nodes in either direction. The ILM oscillates
at its center at 275 kHz [Fig. 3(a)] and 295 kHz [Fig. 3(b)]
but is driven at twice the corresponding frequency. It
is worth mentioning that the particular location where
the ILM is formed is partly due to (very slight) config-
urational asymmetries (i.e., very weak defects), where
the driving preferentially excites a particular site of the
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FIG. 5: (Color online) (a) Two-dimensional FFT of the exper-
imental lattice dynamics. (b) Spatial component of the FFT
(see text for description) in part (a) corresponding to 750 kHz
(solid lines) and 375 kHz (dotted lines). (c) A spatial snap-
shot of the resulting spatially extended structure using same
layout as in Figs. 3(a) and (b).

lattice and the resulting breather state emerges sponta-
neously as a result of this feature. It should be men-
tioned that modulational instability of the (subharmoni-
cally excited) uniform mode may also arise and has been
observed to give rise to multi-breather states. The pro-
files of the ILM depicted in Fig. 3 correspond to the times
at which the ILM reaches its most positive and negative
voltages for both the experimental data (markers) and
for the theoretical model results (solid line), suggesting
an excellent agreement between the two approaches. The
insets in panels (a) and (b) show the numerical lineariza-
tion spectrum of Floquet multipliers (λ = λr + iλi) cor-
responding to this time-periodic solution indicating dy-
namical stability of the ILM. It is interesting to note that
there exists a narrow frequency interval, where the the-
oretical model predicts the destabilization of the ILM in
favor of a stable quasi-periodic ILM through a Hopf loop
(forward Hopf and reverse Hopf) bifurcation. Detailed
analysis of the experimental results (frequency spectra)
also reveals the corresponding window in the experi-
ments. Further studies of this interesting bifurcation will
be reported elsewhere.

Figure 4 illustrates the ILM dynamics in more detail.
The top panel depicts the experimental time traces at
various nodes. The most prominent trace corresponds
to the ILM center; the other traces correspond to first-,
second-, and third-neighbor dynamics (the experimental
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FIG. 6: Linear dispersion curve and normal modes (red dots)
in relation to frequencies at which nonlinear subharmonic re-
sponse is suppressed (horizontal lines) in the experiment.

traces suffer from a more limited time resolution). In
Fig. 4(b), the numerical traces give a smoother picture
in very good agreement with the experiment; both pan-
els demonstrate that the frequency of oscillation at the
ILM’s center is half of the driving frequency, fd. Further-
more —as evidenced by the frequency spectra depicted
in Figs. 4(c)–(f)— as we move away from the center to
neighboring lattice nodes, a second oscillation cycle grad-
ually appears and we transit from dominance of the fd/2
frequency to the eventual dominance of the fundamental
frequency fd. Thus, spatially, moving from the wings to
the center, a period-doubling transition occurs.

We now explore the dependence on the driver fre-
quency. Single-peak ILMs (shown in Fig. 3) are found
between 525 kHz and 617 kHz (at 7.5 V amplitude). The
lower bound is dictated by an emerging overlap with the
zone-boundary linear mode, and the upper bound is dic-
tated by the coincidence of the ILM with the uniform
linear mode. As the driver frequency is raised beyond
617 kHz, the subharmonic will start to intersect the dis-
persion curve. What is interesting is that even inside the
linear dispersion band, localized structures can be driven
subharmonically, as we will now show.

Figure 5(a) captures the system’s experimentally mea-
sured response in reciprocal space to a driver at a fre-
quency of 750 kHz and an amplitude of 7.92 V. We clearly
observe energy concentration at the discrete values in k-
space where the dispersion curve (dotted red line) inter-
sects the fd/2 line. Moreover, this energy concentration
results from a build-up over time. Figure 5(b) plots the
Fourier amplitude at fd and fd/2, for three distinct times
in its evolution. The bottom trace corresponds to an
early time-interval, t = 0 to 400 µs with only weak sub-
harmonic response, the middle trace indicates the sub-
harmonic response emergence, from t = 1.2 ms to 1.6
ms, while the top one reveals its eventual dominance at
later times, from t = 2.8 ms to 3.2 ms. In the spa-
tial domain, the pattern that results in this situation is
shown in Fig. 5(c). A muti-peaked localized pattern (or
ILM-train) is observed, the periodicity of which is set up
by the wavenumber k on the dispersion curve associated
with ωd/2.

Patterns resembling ILM-trains, as shown in Fig. 5(c),
do not appear at all driver frequencies equally. This is in-
dicated in Fig. 6, where the linear dispersion curve (solid
line) is shown with the (red) dots indicating the normal
modes for a 32-node lattice. Superimposed on these lin-
ear normal modes are horizontal lines depicting frequen-
cies where subharmonic response is the most difficult to
accomplish experimentally. Namely, at driver frequencies
equal to twice those indicated, the multi-peak patterns
vanish first as the amplitude of driving is reduced. These
frequencies coincide well with the linear normal modes.
This correlation suggests that such patterns avoid over-
lap with the linear spectrum and thus preferentially re-
side in the gaps inherent in small lattices [22, 23]. Above
f = 420 kHz (fd > 840 kHz), no pattern can be induced
even at the maximum driving amplitude.
In conclusion, we have demonstrated experimentally

and have supported theoretically through both analy-
sis and numerical computation the fact that the sub-
harmonic response of coupled, driven nonlinear oscilla-
tors involves the formation of intrinsic localized modes
through a spatial period-doubling sequence building up
over time. We anticipate that such conclusions may
have broad applicability to mechanical (pendula, gran-
ular chains), superconducting (Josephson junction) and
optical systems, among others.
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