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We observe from simulations that a doubly resonant structure can exhibit spectral behavior 

analogous to electromagnetically induced transparency, as well as superscattering, depending on 

the excitation.  We develop a coupled-mode theory that explains this behavior in terms of the 

orthogonality of the radiation patterns of the eigenmodes.  These results provide insight in the 

general electromagnetic properties of photonic nanostructures and metamaterials. 
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The concept of cross section is very commonly used to describe how large an object appears 

to incident external radiation [1].  The deviation of the electromagnetic cross section with respect 

to the geometrical cross section is well documented for nanoscale objects.  In cloaking, for 

example, the electromagnetic cross section is made much smaller than the geometrical cross 

section of the object [2-4].  For subwavelength objects exhibiting a single resonance, on the other 

hand, the electromagnetic cross section can be much larger than the geometrical cross section 

[5].  Such a resonance effect is important for applications such as in the design of electrically 

small antennas to allow for good transmission or reception.  An important question to pose 

further would be: How does the electromagnetic cross section behave for an object that supports 

multiple resonances? 

The question we pose above is, in fact, of essential importance in understanding a wide 

variety of effects that are of current interest in nanophotonics [6-10].  For example, it is known 

that having two resonances may lead to interference, in which case the spectral behavior is an 

optical analogue of electromagnetically induced transparency (EIT) [11-18].  For isolated objects 

then, this may result in a suppression of the electromagnetic cross section.  On the other hand, 

the effect of superscattering, which also uses at least two resonances, was also recently noted.  In 

this case, the scattering cross section is significantly enhanced due to the simultaneous presence 

of both resonances [19,20].  A formalism that elucidates the occurrence of both behaviors has 

never been proposed before.  

     In this letter, as a model system of an isolated object that exhibits two resonances, we study a 

system consisting of two slits in a metal film, and study the transmission cross section of this 

system for light incident on one side of the film.  The transmission cross section is defined as the 

total transmitted power over the intensity of an incident plane wave.  It is known that each slit 
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can support a localized resonance and hence the transmission cross section of the individual slit 

has a well-known Lorentzian line shape [21,22].  The two slit system therefore supports two 

resonances.  For this system, our simulations reveal that it can exhibit both EIT and 

superscattering behavior, depending on the excitation.  We develop a coupled-mode theory that 

explains this effect. The theory identifies a superradiant and a subradiant mode in this system [7-

9,14], and moreover indicates the importance of the degree of orthogonality of the radiation 

patterns of the subradiant and superradiant eigenmodes in explaining the transmission behavior.  

In particular, we demonstrate that the perfect EIT analogue shows up as an extreme case where 

the radiation patterns of the eigenmodes are identical, up to a constant phase factor.  

Enhancement of transmission cross section (i.e. superscattering), on the other hand, becomes 

more likely when the radiation patterns are less correlated and, moreover, is guaranteed when the 

radiation patterns of the eigenmodes are orthogonal, and when one uses an excitation that 

significantly excites both resonances. 

     As a starting point, we simulate the transmission cross section spectrum ( )Tσ ω , of a double 

slit structure in a perfect electric conductor (PEC) film of thickness t [Fig. 1].  The slit widths are 

deep-subwavelength (t/10 << λ), so that the individual slits are, to a good approximation, 

isotropic radiators [22].  The slits are spaced 0.6t (center-to-center) and are filled with materials 

with a slightly different permittivity (40 and 40.16), which allows us to independently tune the 

resonant frequencies of the slits.  We obtain ( )Tσ ω  from finite-difference frequency-domain 

(FDFD) simulations [23] [red dots in Fig. 1], for an incoming transverse magnetic (TM) plane 

wave (magnetic field vector pointing out of the plane).  The spectral behavior is characterized by 

two resonances, a broad one and a narrow one.  It also strongly depends on the excitation:  For 

normal incidence and 20 degrees off-normal incidence, the narrow resonance interferes 
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destructively with the broad resonance, and ( )Tσ ω  exhibits an EIT line shape [Figs. 1(a),1(b)]; 

for 40 and 60 degrees off-normal incidence, the contributions from the resonances add up and a 

peak is observed (superscattering) [Figs. 1(c),1(d)].  The position of the sharp resonance with 

respect to the narrow resonance remains approximately unchanged as the angle of incidence is 

varied. 

     In order to explain this behavior, we develop a coupled-mode theory (CMT).  In this CMT, 

the slits are described as resonances, with amplitudes [ ]1 2
Ta a=a .  These resonances interact 

with free space on both sides of the film. The free space is characterized in terms of plane wave 

channels, for which the amplitudes of incoming and outgoing waves are denoted s+ and s-.  We 

distinguish between plane wave channels that are above (subscript T) or below (subscript B) the 

film.  To facilitate the description of these plane wave channels, we impose a periodic boundary 

condition with period L, and label the channels with respect to the parallel wave vector 

components of 2 n Lπ , with n being integers [22,24].  For propagating modes, the index n takes 

on integer values from –N to N, with 
LN
λ
⎢ ⎥= ⎢ ⎥⎣ ⎦

 where λ is the wavelength.  An index n 

corresponds to a channel with angle arcsinn
n
N

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with the normal.  In the end of the 

calculation we will take the limit L → ∞ to recover the case of an isolated object interacting with 

a continuum of plane wave channels.  Once the resonances and channels are defined, the 

coupled-mode equations can be written as [25-27]: 

( ) ,

,

T
T

B

d i K s
dt
s K

+

−

= Ω − Γ +

=

a a

a
.      (1) 
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The matrix 1 12

12 2

ω ω
ω ω
⎡ ⎤

Ω = ⎢ ⎥
⎣ ⎦

 contains the resonant frequencies ω1  and ω 2  and the direct coupling 

term  ω12 ; 1 1 2

1 2 2

x
K K

x

γ γ γ
γ γ γ

+
⎡ ⎤

Γ = = ⎢ ⎥
⎢ ⎥⎣ ⎦

 contains the amplitude leakage rates  γ 1  and γ 2  of the 

resonators.  The form of these equations is dictated by energy conservation and time-reversal 

symmetry [26].  The off-diagonal elements of Γ  describe the indirect coupling between the 

resonances, as induced by the interaction between each resonance and free space. These elements 

depend on x, defined as: 

2

0

2

1 1 2lim
cos

niN
i

N n N n

ex e d J d
N

π
φ

φ

π

πθ
π θ π λ→∞ =− −

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

∑ ∫  ,   (2) 

with ( ) ( )
2 sinn ndπφ θ
λ

=  [Fig. 2(a)].  x characterizes the overlap between the radiation patterns of 

the individual resonators, here assumed isotropic.  For d = 0, x = 1, describing the hypothetical 

case where the two slits are right on top of each other, and hence their radiation patterns are 

identical.  As d increases, x oscillates towards zero, following a zeroth order Bessel function of 

the first kind J0 [Fig. 2(b)].  

     The coupling constants to the individual channels, in matrix form, are: 

,1 0,1 ,1

,2 0,2 ,2

1 1
1

2 2
2

cos cos1

cos cos
N N

N NT

N N

N N

i i

N N

k k k
K

k k k

N
e eφ φ

γ γγ
θ θ

π γ γγ
θ θ

−

−

−

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

… …
… …

… …

… …

 .   (3) 

Assuming a plane wave excitation in the top half space, under normal incidence: 

[ ], 0 0 1 0 0 T
Ts + = … …      (4) 
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Similarly, for a plane wave under an angle θn , all channels have zero amplitude, except for 

channel n.  The amplitudes of the channels in the bottom half space are given by the vector sB,-.  

The transmission cross section is then defined as: 

( )
( )
, ,

2
,

,
cos

B B
T n

T n n

s s

s L
σ ω θ

θ

+
− −

+

=  ,    (5) 

with 

( ) 1
, ,

T
B Ts K i I K sω

−
− +⎡ ⎤= − Ω + Γ⎣ ⎦  ,    (6) 

which leads to [28]: 

( ) 3 3 3 3 2 2 2 2 22 2 2 2
12 1 2 1 1 2 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2
2 2 2 2 2 2 1 1 2

1 2 12 1 2 2 1 1 2 12 1 2 2 1

1 2 12 1 2 2 1 1 2

2, [ (cos )( ) ( cos 1)( )

( ) ( )cos ( ) ] /
2

{[2 ( )

T n n n

n

x x x

x

x

λσ ω θ ω φ γ γ ω γ γ ω γ γ ω γ γ ω φ γ γ γ γ
π

γ ω ω γ ω ωγ γ φ ω ω ω ω ωω ωω γ γ ω γ ωω γ ωω

γ γ ω γ γ ω γ ω γ ω

= − + + − − + − −

+ + +− + + − − − + + −

+ + − − 2 2 2 2 2
1 2 1 2 12 1 2 1 2] ( ) }xγ γ γ γ ω ω ωω ωω ω ω+ − + + − + + − (7)

 

This equation matches the simulations excellently [blue lines in Fig. 1].  The resonant frequency 

1ω  and 2ω  and (amplitude) leakage rates 1γ  and 2γ  were found from first-principles 

electromagnetic simulations of the single slits [dashed lines in Fig. 1(a)].  We note that the broad 

(narrow) resonance is wider (sharper) than either one of the individual resonances, indicating that 

the superradiant and subradiant eigen-resonances of the system resulted from the coupling of the 

individual resonances.  The direct coupling term 12ω  is easily fitted, since it corresponds to about 

half the difference in position of the broad and narrow peaks.  We can therefore use a single 

simulation to extract this parameter, which in turn allows us to analytically calculate the spectral 

response for any angle of incidence.  Alternatively, this coupling constant can be calculated 

analytically in principle [25].  In the structure simulated here, the direct coupling term is small, 
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and the broad and narrow resonances are closely aligned.  For stronger direct coupling the 

resonances become less aligned and the line shape becomes more Fano-like.   

     To gain more insight, we now develop an approximate theory that identifies the subradiant 

and superradiant eigenmodes.   For this theory, we can assume that γ 1 = γ 2 = γ , because similar 

slits have approximately the same leakage rates.  Furthermore, we assume that the spatial 

separation is small compared to the wavelength.  In that case, x does not strongly depend on the 

choice of wavelength λ, so that we can pick x = x λ0( )
 

for a wavelength λ0  in the range of interest. 

     Under these assumptions, we can find the eigenmodes, labeled a and b, of the matrix jΩ − Γ : 

( ) ( )
12

,
2 21 2

1 2 12

~ 1
1 2 2

2 2

a b
i x

v
i i x

ω γ
ω ω ω ω ω γ

⎡ ⎤
⎢ ⎥− +
⎢ ⎥−⎢ ⎥± − − + −
⎢ ⎥⎣ ⎦

.   (8) 

as well as the corresponding eigenvalues , ,a b a biω γ− , where 

( ) ( )

( ) ( )

2 21 2
, 1 2 12

2 21 2
, 1 2 12

1Re 2 2
2 2

1Im 2 2
2 2

a b

a b

i i x

i i x

ω ωγ γ ω ω ω γ

ω ωω γ ω ω ω γ

+⎡ ⎤= − − − − + −⎢ ⎥⎣ ⎦
+⎡ ⎤= − − − + −⎢ ⎥⎣ ⎦

∓

∓
.  (9) 

These eigenmodes have the same resonant frequency, when ω12 = 0.  Eigenmode a is 

superradiant; eigenmode b is subradiant. The (complex) radiation patterns of the eigenmodes are 

calculated using the elements of the eigenvectors va  and bv : 

( )
( )

,1 ,2

,1 ,2

i
a a a

i
b b b

C v v e

C v v e

φ

φ

θ

θ

= +

= +
 .     (10) 

These radiation patterns satisfy the normalization relation 

( ) ( ) ( ) ( )
2 2

* *

2 2

1 1 1a a b bC C d C C d

π π

π π

θ θ θ θ θ θ
π π

− −

= =∫ ∫ .  ( ) 2
aC θ  and ( ) 2

bC θ  are therefore directivities of the 

radiation patterns of the eigenmodes.  
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We define the radiation overlap: 

( ) ( )
2

'* '

2

1
b ah C C d

π

π

θ θ θ
π −

= ∫ .    (11) 

with: 

( )
( )

'
,1 ,2

'
,1 ,2

i
a a a

i
b b b

C v v e

C v v e

φ

φ

θ

θ

= −

= −
 .     (12) 

The phase of h corresponds to a weighed radiation phase difference between the superradiant and 

subradiant eigenmodes.  With these definitions, for a plane wave coming in under an angle θ exc , 

the transmission cross section can be written in a much more compact form as: 

( ) ( )
( )

( )
( )

( ) ( )
( )( ) ( )( )

2 22 2 *

2 22 2
, 2a exc a b exc b a exc b exc a b

T exc
a a b ba a b b

C C C C hp
i i

θ γ θ γ θ θ γ γλσ ω θ
π ω ω γ ω ω γω ω γ ω ω γ

⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥≈ + − ℜ⎨ ⎬
− − + − +⎢ ⎥− + − +⎪ ⎪⎣ ⎦⎩ ⎭

. (13)

 

with prefactor 
2

2
,1 ,2 ,1 ,2a b a b b a

p
v v v v

γ

γ γ
=

−
.  Under the stated assumptions, the result of the 

approximate theory (Eq. 13) is in close agreement with Eq. 7 [28]. 

     In Eq. 13, the two Lorentzians describe the contributions of the individual eigenmodes, and 

the cross term describes their interference.  At ω = ωa = ωb (assuming ω12 = 0), the spectrum will 

show a dip (EIT) when a bγ γ�  and: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2*

2 *

2

2 0

a exc b exc a exc b exc a exc

b exc a exc b exc

C C C C h C

C C C h

θ θ θ θ θ

θ θ θ

⎡ ⎤+ − ℜ <⎣ ⎦

⎡ ⎤⇔ − ℜ <⎣ ⎦

 ,   (14) 

and a peak (superscattering) when: 

( ) ( ) ( )2 *2 0b exc a exc b excC C C hθ θ θ⎡ ⎤− ℜ >⎣ ⎦ .    (15) 

     From Eq. 14, we see that EIT is more likely for larger overlap between the radiation patterns 

of the eigenmodes, i.e. values of |h| close to one.  Strong interference between the two resonant 



9 

pathways can only be accomplished when the radiation patterns of the subradiant and 

superradiant modes are similar to each other.  We also note the importance of the phase 

difference between the eigenmodes upon excitation [the phase of Ca
* θexc( )Cb θexc( )], and the 

weighed phase difference in radiation (the phase of h).  To achieve a prominent EIT behavior, 

one has to achieve destructive interference, thus these phases need to cancel each other out. 

Perfect EIT occurs when the radiation patterns of the eigenmodes are identical, up to a constant 

phase factor: 
  
Ca θ( )~ Cb θ( ) and |h| = 1.  The transmission cross section is then: 

( ) ( ) ( ) ( )

2
2

, a b
T exc a exc

a a b b

p C
i i

γ γλσ ω θ θ
π ω ω γ ω ω γ

≈ −
− + − +

 ,   (16) 

so that the transmission cross section drops to exactly zero at ω = ωa = ωb.  Fig. 3(a) illustrates 

this case, with the following parameters: ωa = ωb = 1, γa = 0.39, γb = 0.01, ( ) ( ) 1a bC Cθ θ= = , p = 

1. 

     Another extreme, the case of omnidirectional superscattering, can be achieved in structures 

such as nanorods and nanospheres with a plasmonic-dielectric-plasmonic layer structure [19,20], 

where the radiation patterns of the subradiant and superradiant eigenmodes are exactly 

orthogonal, so that h = 0.  Equation 15 is then guaranteed to be satisfied, when the subradiant 

eigenmode is excited.  The transmission cross section is then nothing more than the sum of the 

Lorentzians associated with the individual eigenmodes.  For a structure that supports two such 

eigenmodes, we find: 

( ) ( )
( )

( )
( )

2 22 2

2 22 2
, a exc a b exc b

T exc
a a b b

C Cp θ γ θ γλσ ω θ
π ω ω γ ω ω γ

⎡ ⎤
⎢ ⎥≈ +
⎢ ⎥− + − +⎢ ⎥⎣ ⎦

 .    (17) 

This case is illustrated in Fig. 3(b), with the same parameters as before, except that now h = 0.  

Note that under the assumption that ( ) ( ) 1a bC Cθ θ= = , the radiation patterns can still be 



10 

orthogonal leading to h = 0, given that the (complex) radiation patters have the right phase 

relation. 

     The two slits case that we have considered in Fig. 1 corresponds to the intermediate case, 

where there is a partial overlap between the radiation patterns of the eigenmodes.  For the two 

slits in Fig. 1, |h| is about 0.7, significantly smaller than one and larger than zero.  In such a case, 

depending on θexc , either Eq. 14 or Eq. 15 can be satisfied, so that we can switch from EIT to 

superscattering.  For normal incidence and 20 degrees off-normal incidence, Eq. 14 is satisfied.  

We observe weakened EIT behavior: the transmission cross section shows a dip, but not to zero, 

because the radiation patterns cannot perfectly destructively interfere, for only partial radiation 

overlap [Figs. 1(a),1(b)].  Superscattering behavior, i.e. the existence of a subradiant peak on top 

of a superradiant background, occurs for the two slits case for sufficiently large off-normal 

angles of incidence [Figs. 1(c),1(d)].  The subradiant and superradiant eigenmodes are then 

excited with an amplitude and phase relation, that causes Eq. 15 to be satisfied. We have thus 

provided a theory that accounts for the simultaneous presence of EIT and superscattering for the 

structure shown in Fig. 1. 

     In conclusion, we developed a coupled-mode theory that predicts and explains EIT analogues 

in addition to superscattering in doubly resonant structures in terms of the overlap between the 

radiation pattern of subradiant and superradiant eigenmodes.  This theory provides insights in the 

general spectral behavior for metamaterials, as well as optical antennas [29,30] and nanoparticles 

[31,32].  
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FIG. 1.  Doubly-resonant structures can exhibit behavior that is (a),(b) a classical analogue of 

electromagnetically induced transparency (EIT), as well as (c),(d) akin to superscattering in their 

transmission cross section spectra, depending on the excitation.  Theory (blue line) matches 

finite-difference frequency-domain simulations (red dots).  The insets show the simulated double 

slit structure with broken symmetry (permittivities of materials in the slits are 40 and 40.16) and 

the incident plane wave.  The dashed lines correspond to the Lorentzian transmission cross 

section spectra of the individual slits. 
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FIG. 2.  (a) Two deep-subwavelength slits spaced a distance d couple to an outgoing plane wave 

(under an angle θ with the normal) with phase difference φ .  The slits are assumed to be 

isotropic radiators.  (b) Overlap between the radiation patterns of the individual radiators. 
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FIG. 3.  Transmission cross section spectra for (a) perfect omnidirectional EIT and (b) 

omnidirectional superscattering. 

 

 

 


