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We study the mechanical quality factors of bilayer alumifsiicon-nitride membranes. By coating
ultrahigh€) SisN4 membranes with a more lossy metal, we can precisely medsereffect of material loss
on Q's of tensioned resonator modes over a large range of freigrenWe develop a theoretical model that
interprets our results and predicts the damping can be egdsignificantly by patterning the metal film. Using
such patterning, we fabricate ASlis N4 membranes with ultrahigf at room temperature. Our work elucidates
the role of material loss in th€) of membrane resonators and informs the design of hybrid amechl
oscillators for optical-electrical-mechanical quanturterfaces.

PACS number(s): 03.67.-a, 42.50.-p, 85.85.+j, 46.40.Ff

Silicon nitride membranes have recently emerged as a '
promising resonators for applications ranging from plieais V-
sensing to realization of a mesoscopic quantum harmonic os-
cillator [1-3]. Because of their large tensile streS§Ny
membranes can have MHz resonant frequencies with sub-Hz
damping rates. The resulting room-temperat@réequency
products of abovel0'® Hz approach the performance of
quartz oscillators [4]. This ultrahigfy combined with a two-
dimensional geometry is an ideal platform for control and de
tection of motion in a high-finesse Fabry-Pérot cavity, and
cooling SisN, membranes in such cavities to their quantum-
mechanical ground state is a near-term prospect. However, e 1 mm
the mechanisms that limit the realiz€dfactors of these ten-
sioned resonators are just beginning to be explored [5-8].  FIG. 1: (color online). Geometry of membrane modes. (a) knag
To date, studies have focused on pure dielecsiigdN, of a 1 mm membrane in its silicon frame. (b) lllustrations loé t
membranes, but a variety of proposed cavity mechanics expef:n) = (2,2) and(15,15) modes. (c) Image of a patterned Al
iments would be enabled by the addition of a metallic layer tdi!™ 01 top 0fSisN4. The central square is Al and the rim3% N,
SizN4 while maintaining high@) [9-12]. Foremost, a metallic suspended on a Si frame. (d) Schemgnc diagram of thii AV,
3:%4 . gnig ) bilayer membrane (50 nm Al and 50 i N4).
membrane section could form a capacitor plate that couples
to a microwave LC resonator; in fact, pure metallic drums
have recently been ground-state cooled using a combination
of cryogenic and microwave cavity cooling [9]. With a hy- for a general clamped, lossy membrane. Our work clarifies
brid dielectric/metallic membrane, one could couple meeha the role of material loss in highly-stressed two-dimenalon
ical motion simultaneously to optical light and a microwave resonators, and has significant predictive power. Finalgy,
electrical circuit in the quantum regime [10]. Such a devicecalculate and demonstrate that by removing the metal inya ver
could solve the difficult, yet crucial, problem of transfeg  small region near the clamp, we can create met&licN,
quantum states between microwave and optical photons. thembranes with impressive quality factors of over 10° at
could also enable enhanced detection of excitations inm1oo 1 MHz at room temperature.
temperature electrical circuit via photodetection [11]rtRer, We use 50 nm-thick stoichiometric LPCVD nitride mem-
a magnetic metallic film could be used for magnetic couplingbranes that are supported by a 2@@-thick silicon frame
of spins to membrane motion [12]. However, the success offrom Norcada Inc.). The membranes are in a square geom-
these applications will hinge on creating hybrid membranegtry of side lengtil = 0.5 mm or 1 mm with tensile stress
with a sufficiently high quality factor at relevant temper&s. o ~ 0.9 GPa and mass densify~ 2.7 g/cm®. The mem-
In our work, we add metallic thin films t8isN, mem-  brane mode shapes are given by approximately sinusoidal
branes and explore the quality factor of many spatial modeg&unctions like those shown in Fig. 1(b) with resonant freque
of the membranes (Fig. 1). First, we identify two distinctdo  cies f.,,, ~ \/o(m? + n?)/4pl2, wherem, n are the integer
mechanisms in our experiments: (1) loss of energy from thenode indices representing the number of antinodes. The sili
mechanical mode into the substrate, i.e. radiation logs(2n  con frame is glued at three corners to a metal form on a piezo-
material damping due to the lossy metallic film. Then, we iso-electric actuator. To probe the mechanical displacemeat, w
late the material loss-limite@ and develop an anelastic the- position the membrane at the end of one arm of a Michelson
ory that explains the observed dependena@ o frequency interferometer. We characterize the mechanical qualitofa
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FIG. 2: Radiation loss for a square membrane. Measureménts o Al
quality factors for many different modes of an (8) x 0.5 mm and
(b) 1 x 1 mm SizN4 membrane. The symmetric modes generally 1r
have higherQ than asymmetric modes, as predicted by a radiation 0 1 5 3 7
loss model [5]. f (MH2)

FIG. 3: Extracting the material loss-limitegl. (a) Measured quality

PP : ; P factors of a squarBis N4 membrane before (green circles) and after
by monitoring the ringdown of the mechanical excitation as a(blue squares) adding a 50 nm film of Al The modes limited (not

function of time in vacuum of less than = torr. limited) by radiation loss are marked by open (closed) esclThe

In a first experiment, we measured tés of pureSisNy data are plotted as a function of frequency measured aftiéngthe
membranes. As shown in Fig. 2, we have the ability to meaAl. (b) Mechanical linewidth of the modes limited by the méaé
sure the quality factors of many modes (up to 150) with differ 10Ss of Al for 0.5 < 0.5 mm (red diamonds) andl x 1 mm (blue
ent symmetries and to confidently assign a meden) to all §quares) membranes. To compare to theory, we calculateathp-d .

. ing ratey» /27 for each mode, and the points are connected with

measured points. When the data are plotted versus resongp displayed lines.
frequency (green circles in Fig. 3), tlig is non-monotonic.
However, when the data are plotted as a function of mode in-
dex in each dimension (Fig. 2), we see that the asymmetric
modes (indices: andm dissimilar) have strikingly smaller Fig. 3(a). Again, as a function of frequency, tfés are non-
quality factors than do the more symmetric modestdm  monotonic, but by drawing on our knowledge of th&s of the
nearly equal). This observation is consistent with expgecte pureSizN, membrane [Fig. 2(b)], we can clearly distinguish
trends for radiation loss of elastic waves through the memradiation loss and material loss. The open squares in Fay. 3(
brane clamp. As recently calculated and measured in Ref. [Stepresent the asymmetric modes found to be radiation-loss
the degree of destructive interference of elastic waveben t |imited for the pureSi;N, membrane. If we remove these
substrate is responsible for the symmetry dependence eWhipoints from the AlSi;N, membrane measurements, we ar-
we see consistently lo&)'s with highly asymmetric modes, rive at a clean set of points (closed squares) represeriting t
we see some variability due to the membrane mounting strugmaterial loss-limitedy as a function of frequency. Damping
ture especially among the lowest order modes [6], as exppecteatesy = 2 f /@ for two datasets obtained using this method
for a radiation loss mechanism [8]. However, for the high-are shown in Fig. 3(b).

order symmetric modes that asymptote&s over a million, We have developed a theoretical framework to describe the
it becomes unclear whether radiation or material l0ss is thgrequency dependence of the material loss-limited qugity
dominant effect. tors of our two-dimensional structures. We model the mem-

In our next experiments, we deposit 50 nm of Al using e-brane as an anelastic plate that dissipates mechanicayener
beam evaporation on top of the pig N, membrane mea- under cyclic loading [13]. Under oscillation, the matesal
sured in Fig. 2(b). The membrane remains under large tensilgtrains and stresses are not in phase, and the energy supplie
stress, but adding the additional film does decrease the-effeby the out-of-phase stresses is converted irreversiblye#d. h
tive stress ta.¢ = 0.35 GPa. With the addition of the metal, This picture has been successfully developed to understand
we see a drop i) to a maximum of~ 2 x 10° as shown in  damping in one dimension&i;N, strings [14, 15].
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In our case, we start by applying standard plate theorfrequency dependence. As noted above in the discussion of
with an in-plane force [16], i.e., under tensile stress,@ted  Eq. (1), the loss is given by an integral of terms proportitma
mine the normal modes. The modes must satisfy the boundhe mode curvatures. We identify two contributions to the cu
ary conditions of the clamped plal& = (9/0x)W =0 or  vature, namely that induced at the clamped edge and that near
W= (9/0y)W=0 for all four edges. We express the 2D mode the antinodes in the interior of the membrane. If the cumeatu
functionW,,,,,(x, y) as a product of stressed-beam functionsat the edge dominates we expect a fJaas a function of fre-
um(2)un(y). We have verified the accuracy of this descrip-quency, or if the antinode contribution dominates we expect
tion via perturbation theory [17]. We use a closed-form ex-decreasing) as the frequency (and correspondingly the num-
pression for the functiom,, () that is a sinusoid with an ex- ber of antinodes) increases. We quantify these statemgnts b
ponential correction near the edge for the clamped boundargeriving a simplified expression f@p as a function of mode
condition. indicesm andn for the limit of (1) an isotropic membrane,

For each mode, we can calculate the loss due to anelage. constantt, in 2 andy and (2) high-stress quantified by
ticity. The oscillation of the plate induces oscillatingashs  smallAm andAn whereX = /E’h2 /3012 is a dimensionless
ex2€™t £, €™t ande, !, and the accompanying stressesstress parameter. Hef¢ = E, /(1 — v?) andh, [, ando are
are given by the usual constitutive equation of classicathe height, length, and stress of the membrane respectinely
plate [18] with the complex Young’s moduli& = F, +iE,, these limits, Eq. (1) becomes an integral over squared sinu-
where E; is called the loss modulus. During one cycle, thesoidal terms (antinode contribution) and an exponentiahte

full expression for the energy lost is (edge contribution) to give a totg) of [17]
 [27Ea(2,y) [ (Eax + Eyy)?  Eay 1E m? +n2)r? \ !
AU‘/ 1+v { 2(1 - v) +T_€“€yy}dv @ Qumn ~ XE_1< 1+ A%) )
2\~
wherev is the Poisson’s ratio [17]. Note, the strain term edge antinode
ere = —2(0?W/02?) is proportional to the curvature of the

mode function. To calculate the quality factor, we also resed The termA(m? + n?)7%/4 determines whether there will be
expression for the total stored energy. It can be obtaired fr a frequency-dependeft. For our experiments, and similar
the maximum Kkinetic energ{y = 2pm2f? fW(x,y)QdV. experiments with large membranes [5, 8]~ 10~4-1072,
The quality factor for a particular modé’,,,,, is then given and hence we expect a relatively f@t However, if the edge
by Qun = 27Upn /AU length is decreased,increases and the antinode contribution
We start by using our theory to calculate the damping ofcan become large. Hence, a frequency dependence appears for
fully-metallized membranes. We apply a least-squares fit t@xperiments such as those in Ref. [14] where shorter strings
the two datasets (two different-sized membranes) in Fig) 3( (< 35 um) are used.
assuming a single frequency-independent loss modulus. Thi Further, the prefactadr/\ in Eq. (2) determines the geome-
reveals an effective bilayét, = 0.55 GPa. The correspond- try and stress dependence for thef the fundamental mode.
ing Al loss modulus is consistent with typical values fomthi  Physically,\ can be written as the ratio of bending energy to
film polycrystalline Al at room temperature, as measured, fo elongation energy [17], and as discussed in Ref. [14], excit
example, via depositing Al on a low-loss Si cantilever [19]. ing energy in the form of elongation energy rather than bend-
The presumed microscopic origin of the loss is related te-cry ing energy leads to high&p. More concretely, based upon
tallographic defects such as grain boundary sliding [2Dp21 Eg. (2), we predict that if the membrane side lengith dou-
kinks on dislocations [22]. Despite this underlying comxple bled, of the fundamental mode will double for the same loss
ity, our model assumes very little about the microscopigiari modulus, and this is exactly what is observed in Fig. 3(l®; th
of the loss. Namely, we assume that the defects are uniformlginalogous effect in 1D was observed in Ref. [14]. We also
distributed within the deposited metal in theandy direc-  see that as the stress is vari€liscales with,/o, and hence
tions. We also assume the temperature stays sufficiently cothe linewidthy = 27 f/Q remains constant. While Eq. (2)
stant in our measurements so as not to affect the loss modosly holds in the stressed limit, a calculation in the zeresst
lus. We have verified that the heating due to our measuremeffiexural) limit reveals the linewidth increases by a onlew/f
laser of power 15W is not a significant effect by measur- factors from the highly-stressed case.
ing constant quality factors as the power is varied from 10 to Our analysis above indicates that by making the loss mod-
900 pW. ulus near the membrane edge small, we can reduce the loss
With continued analysis of the theory we can not onlysignificantly. Using our ability to control the addition ofam
model, but understand thg dependencies seen in Fig. 3, and terial loss with the Al film, we can directly test this prediat.
put our observations in the context of other studies in 1D and he inset to Fig. 1(c) showslax 1 mm membrane where we
2D [5, 8, 14, 15]. We would like to understand: (1) The fre- deposited Al nearly everywhere except in a smal pum re-
guency dependencies, i.e., why an extremely corrugate@ modjion near the edge. The quality factors of this membrane were
has only a slightly loweg) than the fundamental mode in our measured to be dramatically higher (blue circles) than a con
measurements (2) The geometry dependence, i.e., how dampel experiment (red squares) in which an identical layehlof
ing should scale with resonator size. First, we address th@as deposited everywhere on a separate membrane (Fig. 4).
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room temperature revealélis of 103—10° [23, 24], and even
at cryogenic temperatures, where the metal’s materialifoss
significantly reduced, observed values for tensioned mi-
croresonators are typically)® —10° [25-27].

Itis elucidating to understand what would happen tod¢he
trends we observe for the partially-metallized membraraup
varying the membrane stress. This requires analysis of the
spatial dependence of the curvature in the membrane plane.
In the inset to Fig. 4 we see the high-curvature area only oc-
cupies a very smal-1 pum region near the edge of a high-

10% tension membrane (here we use our lowesgt = 0.35 GPa);
1 2 3 4 5 6 7 specifically, the decay length s /4 [17]. As the stress is
f (MH2) reduced (and henckis larger), the curvature becomes more
uniformly distributed over the membrane plane. Hence we
FIG. 4: (color online). Ultrahighe metal-covered membranes. would not expect a dramatic differencednfor a purely flex-
Measured quality factors of twhiz N4 membranes with Al every-  yral mode when avoiding lossy material only at the edge.

where but near the edge of the membrane (blue circles) [ge(€)] The localized curvature of the tensioned membrane that we

and a full film of Al as a control experiment (red squares). gyet- - e . - !
ric modes (with one mode index less than or equal to two) areeda  OPS€rve provides insight into a variety of membrane appli-

by open circles or open squares. Calculated quality fadtwreach cations. Note for higher-order two-dimensional modes the
geometry are shown by the two lines; a single loss modulusad u curvature varies along the edge of the membrane, i.e. there
for both. (Inset) The square of the curvature of a stressedenas  are low-curvature regions near the nodes at the membrane
a fun_ction of distance along one coordinate of the membraihés edge [17]. Thus, to create an electrical link between a cen-
function decays exponentially near the membrane edge. tral metallized patch and external circuits, and maintagih
@ performance, one could tailor metal connections to match
up with the low-curvature regions near nodes at the mem-
brane edge [17]. Further, membrane patterning via holes is a
For these data we show tiigs measured for all modes, but omising technique to increase reflectivity of membraoes f
identify the lowere) asymmetric modes by open circles or hiomechanics experiments, but like metal depositiory als
squares. For both datasets in Fig. 4 we anneal the membrangss potential to introduce defects. A full understandintnef
at 340C after depositing the Al film resulting in an effective ¢,ryature of the two-dimensional membrane is important for
stress ofr.¢ = 0.6 GPa. While annealing was not necessarynderstanding the change@ or a lack of a decrease i,
for studying the fully-metallized membranes of Fig. 3, te U, recent patterning experiments [28, 29].
equal stress of the Al film in the partially-metallized mem- We thank |. Wilson-Rae K. W. Lehnert. and R. W. Sim-
brane makes the higher-order modes difficult to identifye Th monds for vaiuable discus’sio'ns ;’:\nd A. M’. Kaufrﬁan.for as-
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We can again apply our theory to quantitatively predict the

Q for this new geometry. Sincg&s now becomes a function

of position on the membrane, we return to using the full ex-

pression of Eq. (1). We assign a finite loss modulus for the
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