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Using the nonobservance of missing mass events in the leptonic kaon decay K → µX, we place a
strong constraint on exotic parity-violating gauge interactions of the right-handed muon. By way
of illustration, we apply it to an explanation of the proton size anomaly that invokes such a new
force; scenarios in which the gauge boson decays invisibly or is long-lived are constrained.

In the standard model (SM), the right-handed charged
lepton field `R is a gauge singlet, and the chiral muon field
µR is an example of such a field. It is straightforward to
add a new UµR(1) gauge interaction without modifying
the SM gauge group structure, and simultaneously evade
many phenomenological constraints. Recently, this possi-
bility has been entertained [1] to explain a measurement
of the proton radius obtained from the Lamb shift of
muonic hydrogen [2] , that is 5σ smaller than that deter-
mined from ordinary hydrogen or e-p scattering data [3].
While the new interaction alone would be in conflict with
measurements of the muon anomalous magnetic dipole
moment gµ − 2 [4], one can arrange a delicate cancella-
tion from another sector of new physics, such as a new
scalar boson associated with the Higgs mechanism. Al-
though unnatural, such fine tuning is conceivable.

An explicit example of such a cancellation can be
found in the model of Ref. [1] which has a UµR(1) vec-
tor gauge boson V and a complex scalar field, both
with mass of tens of MeV. The Lamb shift correction
in muonic hydrogen is accounted for by a modest gauge
coupling gR ≈ 0.01 and a small kinetic mixing amplitude
κ ∼ 0.002 between V and the photon field. The large V -
exchange contribution to gµ − 2 is cancelled at the 0.1%
level by the contribution of the scalar.

In this Letter, we examine an important constraint on
the gR gauge coupling to µR in the context of the leptonic
kaon decay, K → µν [5]. If V is lighter than 100 MeV,
it can be radiated from the muon line of the above pro-
cess. If V is stable, the combined recoiling system forms
a missing mass for which there is no experimental ev-
idence. In fact, the size of gR that accommodates the
Lamb shift of muonic hydrogen [1] is not allowed by lep-
tonic kaon decay provided V decays invisibly or does not
decay inside the detector.

Note that in the minimal version of the model of
Ref. [1], V decays promptly into e+e− pairs via kinetic
mixing with the photon, and our constraint does not ap-
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FIG. 1. V bremsstrahlung in K− → µ−ν̄µ decay.

ply.1 More baroque realizations, in which there are new
particles that are charged under UµR(1) and lighter than
mV /2, are strongly constrained unless these particles de-
cay to the SM.

For the sake of generality, we assume that a light vector
particle V and the right-handed muon interact via the
Lagrangian term,

gRµ̄R /V µR . (1)

It is possible to produce a V boson by radiation in
K → µν decay as long as the V boson is lighter than
about 100 MeV; see Fig. 1.

1 Measurements of K+ → µ+νe+e− have been made with e+e−

invariant masses above 145 MeV [6], so that they are relevant
only for mV > 145 MeV.

However, a recent search for V in the decay chain φ → ηV ,
η → π+π−π0, V → e+e−, by the KLOE-2 collaboration [7] ex-
cludes the kinetic mixing parameters corresponding to the points
with (mV , gR) = (50 MeV, 0.05) and (100 MeV, 0.07) in Ref. [1].
The (mV , gR) = (10 MeV, 0.01) point of Ref. [1] yields a proton-
muon interaction that is incompatible with measurements of the
muonic 3D5/2 – 2P3/2 X-ray transition in 24Mg and 28Si [8].
Other points of the minimal scheme that survive these con-
straints may exist, but this requires a parameter space scan.
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In the process K− → µ−V ν̄µ, the relevant hadronic
weak-current matrix element is 〈0|ūγα(1 − γ5)s|K−〉 =
fKp

α
K , where pαK denotes the momentum of the decaying

kaon and fK = 156.1 MeV [9]. The amplitude for the
process is then

M =

√
2gRGF fK mµ sin θC
(pµ + pV )2 −m2

µ

[
ūµ/εV /pK

1− γ5

2
vν

]
,(2)

where θC is the Cabibbo angle and εµV is the polariza-
tion vector of the V boson. The spin-summed squared
amplitude is given by∑

|M|2

=
4g2
RG

2
F f

2
Km

2
µ sin2 θC

(m2
V + 2pV · pµ)2

[
2pK · pµ pK · pν −m2

Kpµ · pν

+
2pV · pµ
m2
V

(2pK · pV pK · pν −m2
KpV · pν)

]
. (3)

In the rest frame of the kaon, energy conservation in
terms of the scaling variables,

xα = 2Eα/mK = 2pK · pα/m2
K , α = µ, ν, V

dictates xµ + xν + xV = 2. We have for the scalar prod-
ucts,

pµ · pν =
m2
K

2
(1− xV + δV − δµ) ,

pµ · pV =
m2
K

2
(1− xν − δV − δµ) , (4)

pν · pV =
m2
K

2
(1− xµ − δV + δµ) ,

with δV = m2
V /m

2
K and δµ = m2

µ/m
2
K . We thus derive

the differential decay rate

dΓ(K− → µ−V ν̄µ)

dxµdxν
=

mK

256π3

∑
|M|2 , (5)

with
∑
|M|2 in Eq. (3) written in terms of xµ,ν,V and

δµ,V . The range of xµ is
[
2
√
δµ, 1 + δµ − δV

]
. xν is

bounded by the following upper and lower limits:

1

2(1− xµ + δµ)

[
(2− xµ)(1− xµ + δµ + δV )

±
√
x2
µ − 4δµ(1− xµ + δµ − δV )

]
. (6)

It is useful to normalize our result in Eq. (5) with respect
to the standard two-body decay rate,

Γ(K− → µ−ν̄µ) =
G2
F

8π
mKm

2
µf

2
K sin2 θC

(
1−

m2
µ

m2
K

)2

(7)

to get the dimensionless formula

1

Γ(K− → µ−ν̄µ)

dΓ(K− → µ−V ν̄µ)

dxµdxV
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FIG. 2. Differential decay rate of muonic kaon decay with V
bremsstrahlung as a function of the missing mass, normalized
to the standard two-body muonic kaon decay. The 90% CL
upper limit in the mass range 227.6 ≤ mX ≤ 302.2 MeV is
marked by a short horizontal line. The distributions for the
three benchmark points shown violate the upper limit. We
remind the reader that the bound is evaded by the minimal
model of Ref. [1], since V decays promptly to e+e−; model
extensions in which V decays invisibly or is long-lived are
strongly constrained.

=
g2
R/(1− δµ)2

16π2(1− δµ − xν)2

[
xµxν − 1 + xV − δV + δµ

+
1

δV
(1− xν − δV − δµ)(xV xν − 1 + xµ + δV − δµ)

]
.

(8)

After integrating over xν , the resulting energy distribu-
tion in xµ can be confronted by the search for a miss-
ing recoiling mass in muonic kaon decay. To compare

with experiment, we need 1
Γ(K−→µ−ν̄µ)

dΓ(K−→µ−X)
dmX

ver-

sus mX , with X denoting the missing energy. Since
pX = pV + pν , we get m2

X = m2
K(1− xµ + δµ), and

dΓ

dmX
=

2
√

1− xµ + δµ

mK

dΓ

dxµ
. (9)

A null result for missing mass in such decays was ob-
tained with a sensitivity of 10−7 MeV−1 [5]. The exper-
imental acceptance of the muon kinetic energy is in the
range, 60 MeV to 100 MeV, that corresponds to a missing
mass mX of 302.2 MeV to 227.6 MeV, a mass interval of
74.6 MeV. The nonobservation of a signal sets a 90% CL
upper limit on the branching fraction of 3.5×10−6 in this
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FIG. 3. The (mV , gR) parameter space above the solid curve
is excluded at the 90% CL. The three red dots are the bench-
mark points in Fig. 2 and are disallowed if V decays invisibly
or is long-lived.

mass interval, corresponding to a normalized differential
fraction 4.7× 10−8 MeV−1. In previous work, this limit
has been used to constrain the Majoron model [10].

In Fig. 2, we show the normalized differential decay
rate of K → µV ν as a function of the missing mass. The
short horizontal line marks the 90% confidence level (CL)
upper limit in that mass range. We also show the differ-
ential decay rate curves corresponding to three bench-
mark choices of (mV , gR) for the model of Ref. [1] with
the assumption that V has a long enough lifetime that
it does not decay inside the detector, or that it decays
invisibly. The 90% CL upper limit on gR is shown in

Fig. 3. The three benchmark choices of Fig. 2 indicated
by red dots are disallowed.

In conclusion, we pointed out a constraint on a new
gauge interaction that couples to the right-handed muon
and has a gauge boson mass less than about 100 MeV.
This light gauge boson can be copiously produced by
bremsstrahlung off the muon line in K → µν decays. The
lack of experimental evidence for missing mass events
constrains the size of the coupling and variants of a
model [1] proposed to explain the proton size anomaly.
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