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Abstract

The degeneracy of two-phase disordered microstructures consistent with a specified correlation

function is analyzed by mapping it to a ground-state degeneracy. We determine for the first time

the associated density of states via a Monte Carlo algorithm. Our results are described in terms

of the roughness of the energy landscape, defined on a hypercubic configuration space. The use

of a Hamming distance in this space enables us to define a roughness metric, which is calculated

from the correlation function alone and related quantitatively to the structural degeneracy. This

relation is validated for a wide variety of disordered systems.
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Spatial correlation functions are fundamental descriptors that arise in a variety of disci-

plines, including condensed matter physics [1], geostatistics [2], computer vision and image

analysis [3], statistical physics [4], and materials science [5, 6]. They notably provide a very

general tool for characterizing the microstructure of materials and relating this information

to their physical properties [5]. Moreover, most experimental techniques available for in situ

studies with a nanometer resolution – notably scattering methods – yield information in the

form of two-point correlation functions [7–10].

It is well known that two-point statistics are generally not sufficient to characterize fully

a microstructure [11]. This is referred to as the phase problem in crystallography. The

ambiguity of two-point information has been investigated theoretically from the perspective

of crystallography [12, 13], computer vision [14], materials science [15], and cosmology [15].

In some very special cases, distinct microstructures with identical correlation functions can

be derived analytically [16, 17]. It has also been shown that the structural ambiguity is

considerably larger for a radial function without angular information, which is the only

data available from small-angle scattering experiments. However, if angular information is

employed successful microstructure reconstructions can often be obtained [18–21].

In the present paper, we determine for the first time a general means to numerically

calculate the number of microstructures consistent with any specified correlation function

for arbitrary systems. For concreteness, the present analysis is focused on two-phase mi-

crostructures which are suitable models for a host of natural and synthetic materials such

as composites [5, 6], colloidal suspensions and microemulsions [22], porous materials [23],

etc. Moreover, the general method is applied to the radial two-point correlation function

S2(r) defined as the probability that two random points at distance r from one another both

belong to a given phase.

The general methodology consists in mapping the determination of the microstructure

ambiguity to the determination of a ground-state degeneracy. This is achieved in the general

framework of reconstruction methods, which aim at producing microstructures consistent

with a target correlation function Ŝ2(r). In that context, a microstructure having a correla-

tion function S2(r) is associated with an “energy” defined as [24]

E =
∑

r

[

Ŝ2(r)− S2(r)
]2

, (1)

which is equivalent to a norm-2 error. All the microstructures consistent with a specified
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FIG. 1. Degenerate microstructures corresponding to a hard-disk (left) and a polycrystal (right)

two-point correlation functions : in each case, the correlation functions of the two degenerate

microstructures (• and −) are indistinguishable on the scale of the figure.

Ŝ2(r) are the ground states (with globally minimized energy) of the corresponding recon-

struction problem. Examples of degenerate microstructures, obtained via simulated anneal-

ing [24, 25], are given in Fig. 1 for correlation functions typical of hard-disk and polycrystal

microstructures. In both cases the two displayed microstructures have the same two-point

correlation function to within an error of 10−7, but their higher-order correlation functions

differ.

Using the language of solid-state physics, we refer to the number Ω(E) of microstructures

having energy E as the density of states (DOS). An efficient method for estimating the DOS

has been proposed by Wang and Landau [26, 27], and applied to a wide variety of problems

ranging from solid-state physics [28], to biophysics [29], and logic [30]. The algorithm is

based on the observation that a Monte Carlo (MC) move from state i to j with acceptance

probability

pi→j = min {1, Ω(Ei)/Ω(Ej)} (2)

would lead the system to visit all energies with the same probability. Because Ω(E) is

unknown, the DOS is initialized to Ω(E) = 1 for all energies, and the MC algorithm updates

this value until convergence is achieved.

We restrict the discussion to discrete two-phase microstructures, which can be thought

of as an image composed of black and white pixels. Starting from an initial configuration

with energy Ei, a black pixel is moved randomly to an unoccupied pixel. The correlation

function is updated, the new energy Ef is calculated through Eq. (1), and the move is

3



10
−5

10
−4

10
−3

10
1

10
2

10
3

10
4

10
5

10
6

N
Ω

(E
)

E

(k)

(t)

(a)

(a)

10
−5

10
−4

10
−3

10
−2

10
1

10
4

10
7

10
10

10
13

E

(p)

(s)

FIG. 2. Cumulative densities of states for various correlation functions: morphologies (a) and (s)

are uniquely determined by their correlation functions (� and ◦); morphologies (k) and (t) have

identical correlation functions (×); morphology (p) is a realization of a Poisson process (⋄). Each

curve is the superposition of 3 independent Monte Carlo runs.

accepted or rejected according to Eq. (2). Each time a given energy is visited, a histogram

is updated, H(E) → H(E) + 1, and the estimated density of states is updated according to

Ω(E) → F × Ω(E) where F is a numerical factor larger than 1. The evolution continues

with the updated value of Ω(E) until the histogram H(E) is flat. At this point H(E) is

reset to 0, F is reduced to
√
F , and the evolution starts over again. The entire procedure is

repeated until F becomes lower than a prescribed accuracy.

Examples of DOS calculations are given in Fig. 2. The results are given in terms of the

cumulative DOS

NΩ(E) =
∑

e≤E

Ω(e)

which has been normalized for NΩ(E → ∞) to be equal to the total number of configurations

Ωtot =
(

N

N1

)

, with N the total number of pixels and N1 the number of black pixels. The limit

NΩ(E → 0) is the ground-state degeneracy Ω0, i.e. the total number of microstructures

consistent with Ŝ2(r).

The “square” (a) and “sphere” (s) microstructures in Fig. 2 are uniquely specified by their

correlation functions. The degeneracy Ω0 is therefore only a trivial contribution resulting

from the 64 possible translations on a 8×8 grid. The values found from the MC estimations

are 66±7 and 58±8, for (a) and (s) respectively, with the error estimated from 3 independent
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FIG. 3. The configuration space C of a two-phase morphology is a N -dimensional hypercube, on

which a Hamming distance is defined. Each dimension is associated with the phase of a particular

pixel. For a 2× 2 morphology, C is a tesseract, with each 4-dimensional direction represented here

by a color.

runs. Configurations (k) and (t) are the “Kite & Trapezoid” configurations discussed in

a previous paper [16]; they have identical correlation functions, which results in a non-

trivial factor 2 to the ground-state degeneracy. Moreover, as the configurations are lacking

rotational symmetry, the possible orientations contribute a trivial factor 4. The ground state

degeneracy is therefore Ω0 = 512, in excellent agreement with the MC estimate 500 ± 68.

Finally, configuration (p) is a realization of a Poisson point process [3] used here as a model

of a very disordered morphology. This particular microstructure is found to be extremely

degenerate with Ω0 as large as (11± 1) 106.

It is generally acknowledged that large ground-state degeneracy is a characteristic of

systems having a rough energy landscape [31]. Note that the configuration space of discrete

two-phase microstructures is the set of vertices of a N -dimensional hypercube (see Fig. 3).

This results from the properties of the indicator vector I(i), with components equal to 1

when point i is a black pixel and 0 otherwise, which can be seen as a coordinate in N -

dimensional space. Moving the system along a given N -dimensional direction corresponds

to swapping a particular pixel between black and white. Once a target correlation function

Ŝ2(r) is specified, each vertex is associated with an energy E according to Eq. (1).

The roughness of the energy landscape characterizes the spatial variability of E in con-

figuration space. It is meaningful therefore to define a distance in this configuration space.

A natural choice is the Hamming distance, which counts the number of edges between any
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FIG. 4. Left: Energies visited during a random walk in configuration space, starting from a

particular ground state of a hard-disk correlation function. Each color is a realization and the

black line is the average calculated analytically. Examples of microstructures visited for n = 50

and n = 100 are displayed. Right : Statistical distribution νn(d) of the distances d from the ground

state of the morphologies visited after an increasing number of steps n of the random walk.

two vertices. Interestingly, if the number of black pixels is kept constant, i.e.
∑

I(i) = N1,

all the realizable microstructures lie on the intersection of the hypercube with a hyperplane.

Since the Hamming distance within the hyperplane takes only even values, the distance

d[A,B] between two microstructures A and B is defined as half the Hamming distance

d[A,B] =
1

2

N
∑

i=1

(IA(i)− IB(i))
2

In real space, the distance d is the smallest number of black-pixel displacements required to

pass from A to B.

To address analytically the question of the roughness of the energy landscape, we use a

random walk in configuration space, as illustrated in Fig. 4. Starting from a ground state,

i.e. a microstructure with E = 0, the system makes successive random jumps of length d = 1

in configuration space C. When the number of jumps n increases, the random walk explores

the configuration space over increasingly large distances d from the starting microstructure.

The rate at which the energy increases with n characterizes the energy landscape.

An analytical expression is derived in the Supplemental Material [32] for the average

energy, and for the statistical distribution of distances to the ground state, both as a function

of n. Combining these two pieces of information yields a characteristic energy profile for the
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basin of any ground state. A detailed analysis is provided elsewhere [33], and we focus here

on two particular values on the average energy curve. The first is the average energy 〈E〉 in
the limit n → ∞ and the second is the average energy E(1) reached for n = 1. The random

walk being ergodic, 〈E〉 is equal to the average energy of all Ωtot possible states. The other

value, E(1), is a measure of the curvature of the energy landscape near the starting ground

state. This results from the observation that E(1) is the average energy of all states at

distance d = 1 from the ground state, the latter having zeros energy. The ratio E(1)/ 〈E〉
therefore provides a metric for the local roughness of the energy landscape.

The full mathematical expressions for E(1) and 〈E〉 can be found in the Supplemental

Material [32]. The quantity 〈E〉 is a global characteristic of the energy landscape, which

accordingly depends only on Ŝ2(r). By contrast, E(1) depends also on the particular ground

state used as the starting point for the random walk via a particular function σ2
C(r) with

the following structural meaning. Imagine choosing randomly a black pixel in the ground

state and drawing a circle of radius r centered on it (or a sphere in 3D). The fraction of

the circle that overlaps a black pixel is a random variable ϕr that depends on the particular

black pixel chosen as the center. The variance of ϕr is the function σ2
C(r), which can be

thought of as a generalized “coarseness” [34].

The function σ2
C(r) carries 3-point structural information in excess to Ŝ2(r). Thus, σ

2
C(r)

could differ significantly from one ground state to another. In practice, however, the asymp-

totic behavior of σ2
C(r) for both large and small r can be expressed in terms of Ŝ2(r) alone,

which enables us to derive a single approximation σ̃2
C(r) common to all ground states [32].

Using that approximation yields a single value for E(1)/ 〈E〉, which is a global metric of the

roughness of the energy landscape.

Figure 5 shows the quantitative relation between E(1)/ 〈E〉 and a normalized ground

state degeneracy Ω0/Ωtot, for a variety of microstructures defined on a 8 × 8 grid with the

number of black pixels, N1, ranging from 2 to 32 (see Supplemental Material [32]). They

comprise a series of objects uniquely characterized by their correlation functions, which have

therefore only a trivial degeneracy, as well as a series of non-trivially degenerate realizations

of Poisson point processes. In each case, the ground-state degeneracy was estimated via the

MC algorithm, and the roughness metric was calculated from Ŝ2(r) using the approximation

σ̃2
C(r). The ratio Ω0/Ωtot is found to be highly correlated with the ratio E(1)/E∞ over more

than 15 orders of magnitude.
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FIG. 5. Relation between ground-state degeneracy Ω0/Ωtot and roughness of the energy landscape

E(1)/ 〈E〉. The various microstructures are: disks of different sizes (•), realizations of Poisson

processes (⋄), hard-disk systems (×), 4-point configurations (�), and 2-point configurations (∗).

The black line is a guide to the eye; the insets are sketches of the energy landscape for large and

small values of E(1)/ 〈E〉.

When passing from small to large values of E(1)/ 〈E〉, the energy landscape changes

qualitatively in the way suggested by the insets in Fig. 5. For low values of E(1)/ 〈E〉, the
energy landscapes has an overall funnel structure, with low-energy barriers, which makes

it well suited for optimization problems. By contrast, for large values of E(1)/ 〈E〉, the
landscape is very rough with a large number of ground states. However, it is interesting to

note that the rightmost point in Fig. 5 is obtained for a system with N1 = 2 having thus

only a trivial degeneracy. The corresponding energy landscape is extremely rough because

any possible energy can be found at a distance as short as d = 1 from the ground state, but

the total number of configurations Ωtot is also extremely small.

The data referred to as disks in Fig. 5 is a collection of non-degenerate microstructures

with increasing values of N1. As N1 increases, the roughness E(1)/ 〈E〉 decreases but the

degeneracy remains equal to its trivial translation contribution Ω0 = N . Interestingly, the

values of Ω0/Ωtot of these non-degenerate microstructures span the same curve as the realiza-

tions of Poisson processes, for which Ω0 has a huge non-trivial contribution. The observation

that the roughness-degeneracy relation does not discriminate trivial from non-trivial degen-

eracies suggests ways to determine analytically the degeneracy of large microstructures,

which are out of the reach of MC methods [33].
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To summarize, the long-standing problem of the degeneracy of microstructures compat-

ible with a specified two-point correlation function can be tackled obliquely through the

characterization of its associated energy landscape. The results of our MC calculations

show that the roughness of the energy landscape is indeed highly correlated with the ground

state degeneracy. The MC algorithm converges only for very small systems [35] but the

roughness metric we derived, E(1)/ 〈E〉 , can be calculated analytically from Ŝ2(r) with no

limit of size or dimensionality.

Our results have ramifications in the manifold of fields where correlation functions are

useful. In the particular context of materials science, they may contribute to topics as

diverse as the understanding of the sharpness of variational bounds for materials properties

[5] and the quantitative analysis of scattering experiments [7]. In computer vision, they

may help assess the robustness of second-order texture classifiers [3]. They also have direct

applications throughout many subfields of physics because Ω0 is a lower bound for the

physical ground-state degeneracy of any system with pairwise potential energy [33].

Our general methodology can be applied to correlation functions other than S2(r); this

includes higher-order [36] as well as cluster correlation functions [15, 37]. More generally,

random walks in configuration space can be used to derive roughness metrics for the energy

landscape of any physical problem, notably protein folding [38], complex chemical reactions

[31], phase equilibria in nanopores [39], and glass transition [40]. For instance, the modeling

of spin glasses with frustrated Ising models [41] yields an energy that is a linear functional

of S2(r), which is comparatively simpler than the quadratic functional we considered here.

We hope to investigate this in future work.
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